Archive for May 3, 2009

The Cosmic Tightrope

Posted in The Universe and Stuff with tags , , on May 3, 2009 by telescoper

Here’s a thought experiment for you.

Imagine you are standing outside a sealed room. The contents of the room are hidden from you, except for a small window covered by a curtain. You are told that you can open the curtain once and only briefly to take a peep at what is inside, and you may do this whenever you feel the urge.

You are told what is in the room. It is bare except for a tightrope suspended across it about two metres in the air. Inside the room is a man who at some time in the past – you’re not told when – began walking along the tightrope. His instructions were to carry on walking backwards and forwards along the tightrope until he falls off, either through fatigue or lack of balance. Once he falls he must lie motionless on the floor.

You are not told whether he is skilled in tightrope-walking or not, so you have no way of telling whether he can stay on the rope for a long time or a short time. Neither are you told when he started his stint as a stuntman.

What do you expect to see when you eventually pull the curtain?

Well, if the man does fall off sometime it will clearly take him a very short time to drop to the floor. Once there he has to stay there.One outcome therefore appears very unlikely: that at the instant you open the curtain, you see him in mid-air between a rope and a hard place.

Whether you expect him to be on the rope or on the floor depends on information you do not have. If he is a trained circus artist, like the great Charles Blondin here, he might well be capable of walking to and fro along the tightrope for days. If not, he would probably only manage a few steps before crashing to the ground. Either way it remains unlikely that you catch a glimpse of him in mid-air during his downward transit. Unless, of course, someone is playing a trick on you and someone has told the guy to jump when he sees the curtain move.

This probably seems to have very little to do with physical cosmology, but now forget about tightropes and think about the behaviour of the mathematical models that describe the Big Bang. To keep things simple, I’m going to ignore the cosmological constant and just consider how things depend on one parameter, the density parameter Ω0. This is basically the ratio between the present density of the matter in the Universe compared to what it would have to be to cause the expansion of the Universe eventually to halt. To put it a slightly different way, it measures the total energy of the Universe. If Ω0>1 then the total energy of the Universe is negative: its (negative) gravitational potential energy dominates over the (positive) kinetic energy. If Ω0<1 then the total energy is positive: kinetic trumps potential. If Ω0=1 exactly then the Universe has zero total energy: energy is precisely balanced, like the man on the tightrope.

A key point, however, is that the trade-off between positive and negative energy contributions changes with time. The result of this is that Ω is not fixed at the same value forever, but changes with cosmic epoch; we use Ω0 to denote the value that it takes now, at cosmic time t0, but it changes with time.

At the beginning, at the Big Bang itself,  all the Friedmann models begin with Ω arbitrarily close to unity at arbitrarily early times, i.e. the limit as t tends to zero is Ω=1.

In the case in which the Universe emerges from the Big bang with a value of Ω just a tiny bit greater than one then it expands to a maximum at which point the expansion stops. During this process Ω grows without bound. Gravitational energy wins out over its kinetic opponent.

If, on the other hand, Ω sets out slightly less than unity – and I mean slightly, one part in 1060 will do – the Universe evolves to a state where it is very close to zero. In this case kinetic energy is the winner  and Ω ends up on the ground, mathematically speaking.

In the compromise situation with total energy zero, this exact balance always applies. The universe is always described by Ω=1. It walks the cosmic tightrope. But any small deviation early on results in runaway expansion or catastrophic recollapse. To get anywhere close to Ω=1 now – I mean even within a factor ten either way – the Universe has to be finely tuned.

A slightly different way of describing this is to think instead about the radius of curvature of the Universe. In general relativity the curvature of space is determined by the energy (and momentum) density. If the Universe has zero total energy it is flat, so it doesn’t have any curvature at all so its curvature radius is infinite. If it has positive total energy the curvature radius is finite and positive, in much the same way that a sphere has positive curvature. In the opposite case it has negative curvature, like a saddle. I’ve blogged about this before.

I hope you can now see how this relates to the curious case of the tightrope walker.

If the case Ω0= 1 applied to our Universe then we can conclude that something trained it to have a fine sense of equilibrium. Without knowing anything about what happened at the initial singularity we might therefore be pre-disposed to assign some degree of probability that this is the case, just as we might be prepared to imagine that our room contained a skilled practitioner of the art of one-dimensional high-level perambulation.

On the other hand, we might equally suspect that the Universe started off slightly over-dense or slightly under-dense, at which point it should either have re-collapsed by now or have expanded so quickly as to be virtually empty.

About fifteen years ago, Guillaume Evrard and I tried to put this argument on firmer mathematical grounds by assigning a sensible prior probability to Ω based on nothing other than the assumption that our Universe is described by a Friedmann model.

The result we got was that it should be of the form

P(\Omega) \propto \Omega^{-1}(\Omega-1)^{-1}.

I was very pleased with this result, which is based on a principle advanced by physicist Ed Jaynes, but I have no space to go through the mathematics here. Note, however, that this prior has three interesting properties: it is infinite at Ω=0 and Ω=1, and it has a very long “tail” for very large values of Ω. It’s not a very well-behaved measure, in the sense that it can’t be integrated over, but that’s not an unusual state of affairs in this game. In fact it is an improper prior.

I think of this prior as being the probabilistic equivalent of Mark Twain’s description of a horse:

dangerous at both ends, and uncomfortable in the middle.

Of course the prior probability doesn’t tell usall that much. To make further progress we have to make measurements, form a likelihood and then, like good Bayesians, work out the posterior probability . In fields where there is a lot of reliable data the prior becomes irrelevant and the likelihood rules the roost. We weren’t in that situation in 1995 – and we’re arguably still not - so we should still be guided, to some extent by what the prior tells us.

The form we found suggests that we can indeed reasonably assign most of our prior probability to the three special cases I have described. Since we also know that the Universe is neither totally empty nor ready to collapse, it does indicate that, in the absence of compelling evidence to the contrary, it is quite reasonable to have a prior preference for the case Ω=1.  Until the late 1980s there was indeed a strong ideological preference for models with Ω=1 exactly, but not because of the rather simple argument given above but because of the idea of cosmic inflation.

From recent observations we now know, or think we know, that Ω is roughly 0.26. To put it another way, this means that the Universe has roughly 26% of the density it would need to have to halt the cosmic expansion at some point in the future. Curiously, this corresponds precisely to the unlikely or “fine-tuned” case where our Universe is in between  two states in which we might have expected it to lie.

Even if you accept my argument that Ω=1 is a special case that is in principle possible, it is still the case that it requires the Universe to have been set up with very precisely defined initial conditions. Cosmology can always appeal to special initial conditions to get itself out of trouble because we don’t know how to describe the beginning properly, but it is much more satisfactory if properties of our Universe are explained by understanding the physical processes involved rather than by simply saying that “things are the way they are because they were the way they were.” The latter statement remains true, but it does not enhance our understanding significantly. It’s better to look for a more fundamental explanation because, even if the search is ultimately fruitless, we might turn over a few interesting stones along the way.

The reasoning behind cosmic inflation admits the possibility that, for a very short period in its very early stages, the Universe went through a phase where it was dominated by a third form of energy, vacuum energy. This forces the cosmic expansion to accelerate. This drastically changes the arguments I gave above. Without inflation the case with Ω=1 is unstable: a slight perturbation to the Universe sends it diverging towards a Big Crunch or a Big Freeze. While inflationary dynamics dominate, however, this case has a very different behaviour. Not only stable, it becomes an attractor to which all possible universes converge. Whatever the pre-inflationary initial conditions, the Universe will emerge from inflation with Ω very close to unity. Inflation trains our Universe to walk the tightrope.

So how can we reconcile inflation with current observations that suggest a low matter density? The key to this question is that what inflation really does is expand the Universe by such a large factor that the curvature radius becomes infinitesimally small. If there is only “ordinary” matter in the Universe then this requires that the universe have the critical density. However, in Einstein’s theory the curvature is zero only if the total energy is zero. If there are other contributions to the global energy budget besides that associated with familiar material then one can have a low value of the matter density as well as zero curvature. The missing link is dark energy, and the independent evidence we now have for it provides a neat resolution of this problem.

Or does it? Although spatial curvature doesn’t really care about what form of energy causes it, it is surprising to some extent that the dark matter and dark energy densities are similar. To many minds this unexplained coincidence is a blemish on the face of an otherwise rather attractive structure.

It can be argued that there are initial conditions for non-inflationary models that lead to a Universe like ours. This is true. It is not logically necessary to have inflation in order for the Friedmann models to describe a Universe like the one we live in. On the other hand, it does seem to be a reasonable argument that the set of initial data that is consistent with observations is larger in models with inflation than in those without it. It is rational therefore to say that inflation is more probable to have happened than the alternative.

I am not totally convinced by this reasoning myself, because we still do not know how to put a reasonable measure on the space of possibilities existing prior to inflation. This would have to emerge from a theory of quantum gravity which we don’t have. Nevertheless, inflation is a truly beautiful idea that provides a framework for understanding the early Universe that is both elegant and compelling. So much so, in fact, that I almost believe it.

Christopher Logue

Posted in Jazz, Poetry with tags , on May 3, 2009 by telescoper

Poetry is in the news today.

Yesterday’s announcement that the 23rd  Poet laureate is to be Carol Anne Duffy has generated as much comment about her sexual orientation as the undoubted quality of her verse.

But that’s not the point of this post.

I don’t know why but all the stuff in the papers reminded of a very rare recording I heard years ago the poet Christopher Logue with a Jazz group led by the drummer Tony Kinsey.

Christopher Logue is now in his eighties and is probably best known as a regular contributor to the satirical magazine Private Eye (to which I have not yet cancelled my subscription). Among other things in the Eye, he edits the hilarious Pseuds Corner, a collection of the most pretentious drivel culled from newspapers and magazines.

But he’s also a fine poet in his own right and has been for many years.

The first time I heard this old recording made in the late 1950s, I didn’t listen very carefully to the words. I thought it was just a very funny skit – a posh British guy doing beat poems couldn’t possibly be serious, could it?   Especially if it sounds like Allen Ginsberg meets Julian Clary…

..but listening to it again, and especially studying the words it’s grown on me so much I now think it’s a minor masterpiece.

large_8be9743ce0f84fa88d982cbdb1949b9cThere is an audio-only version on Youtube, but it refuses to be embedded. Click here if you want to hear the performance on record.

Now read the lyrics:

1.

Lithe girl, brown girl
Sun that makes apples, stiffens the wheat
Made your body a joy
Tongue like a red bird dancing on ivory
To stretch your arm
Sun grabs at your hair
Like water was falling

Tantalize the sun if you dare
It will leave shadows that match you
Everywhere
Lithe girl, brown girl
Nothing draws me towards you
The heat within you beats me home
Like the sun at high noon

Knowing these things
Perhaps through
Knowing these things
I seek you out
Listening for your voice
For the brush of your arms against wheat
For your step among poppies grown underwater
Lithe girl, brown girl

2.

Steep gloom among pine trees
Waves’ surge breaking
Slow lights that interweave
A single bell

As the day’s end falls into your eyes
The earth starts singing in your body
As the waves sing in a white shell
And the rivers sing within you
And I grow outwards on them
As you direct them
Whither you make them run

I follow for you like a hare
Running reared upright to the hunter’s drum
You turn about me like a belt of clouds
the silence, though it is stupid
Mocks the hours I lay
Troubled by…… nothing

Your arms – translucent stones wherein I lie
Exhausted
And future kisses
Die
Lust
Your mysterious voice
Folds close echoes
That shift throughout the night
Much as the wind
Which moves darkly over the profitable fields
Folds down the wheat
From all its height

3.

In the hot depth of summer
The morning is close, storm-filled
Clouds shift -
White rags waving goodbye
Shaken by the frantic wind as it goes and
As it goes
The wind throbs over us
Love-making silenced

Among the trees like a tongue singing
A warning or just singing the wind throbs
And the quick sparrow’s flight is slapped by the wind
Swift thief destructive as waves
Weightless without form
Struck through and through with flame
Which breaks
Soughing its strength out
At the gates of the enormous, silent, summer wind

4.

That you may hear me
My words narrow occasionally
Like gull-tracks in the sand

Or I let them become
Tuneful beads
Mixed with the sound

Of a drunk hawk’s bell
Flick me your wrists…..
Soft as grape skin – yes

Softer than grapeskin I make them
Which is a kind of treachery against the world

Yet
You who clamber
Over all the desolations of mine
Gentle as ivy
Eat the words’ meaning

Before you came to me
Words were all that you now occupy
And now they’re no more these words
Than ever they knew of my sadness

Yet
Sometimes
Force and dead anguish still drags them
And yes

Malevolent dreams still betimes
Overwhelm them and then

In my bruised voice
You hear other bruised voices
Old agues crying out of old mouths

Do not be angry with me
Lest the wave of that anguish
Drown me again

Even as I sit
Threading a collar of beads for your hands
Softer than grape skin
Hung with a drunk hawk’s bell

I think these are beautiful poems made even more effective by the musical setting. In fact they are loose re-workings of some of the famous love poems of Pablo Neruda. Logue moved far away from the Neruda’s originals, but put them into impressionistic free verse, which he reads in his plummy English accent, while the band provides appropriate backing for the sentiments of the poetry as well as providing improvised passages in between the verses.

Looking at this now, I have no idea why I thought it was meant to be funny.

Follow

Get every new post delivered to your Inbox.

Join 3,283 other followers