In a Galaxy, Faraday…

I was finishing off the draft of a paper the other day and remembered a little paper I did some time ago with a former PhD student of mine, Patrick Dineen. I thought it would be fun to put the pictures up here because it was one of those occasions when a little idea turns out much nicer than you expected…

What we had to start with was a collection of Faraday Rotation measurements of extragalactic radio sources dotted around the sky. Their distribution is fairly uniform but I hasten to add that it was not a controlled sample so it would be not possible to take the sources as representative of anything for statistical purposes.

Faraday rotation occurs because left and right-handed polarizations of electromagnetic radiation travel at different speeds along a magnetic field line. The effect of this is for the polarization vector to be rotated as light waves travel and the net rotation angle (which can be either positive or negative) is related to the line integral of the component of the magnetic field along the line of sight travelled by the waves. The picture below shows the distribution of sources, plotted in Galactic coordinates and coded black for negative and white for positive.


Some radio galaxies have enormously large Faraday rotation measures because light reaches us through regions of the source that have strong magnetic fields. However, for most sources in our sample the rotation measures are smaller and are thought to be determined largely by the propagation of light not through the emitting galaxy, near the start of its journey towards us, but through our own Galaxy, the Milky Way, which is near the end of its path.

If this is true then the distribution of rotation measures across the sky should contain information about the magnetic field distribution inside our own Galaxy. Looking at the above picture doesn’t give much of a hint of what this structure might be, however.

What Patrick and I decided to do was to try to make a map of the rotation measure distribution across the sky based only on the information given at the positions where we had radio sources. This is like looking at the sky through a mask full of little holes at the source positions. Using a nifty (but actually rather simple) trick of decomposing into spherical harmonics and transforming to a new set of functions that are orthogonal on the masked sky we obtained the following map:


(The technical details are in the paper, if you’re interested.) You probably think it looks a bit ropey but, as far as I’m concerned, this turned out stunningly well. The most obvious features are a big blue blob to the left and a big red blob to the right, both in the Galactic plane. What you’re seeing in those regions is almost certainly the local spur (sometimes called the Orion Spur; see below), which is a small piece of spiral arm in which the local Galactic magnetic field is confined. The blobs show the field coming towards the observer on one side and receding on the other. The structure seen is relatively local, i.e. within a kiloparsec or so of the observer.

I was very pleased to see this come out so clearly from an apparently unpromising data set, although we had to confine ourselves to large-scale features because of instabilities in the reconstruction of high-frequency components.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: