Archive for July 1, 2010

New light through a gravitational lens

Posted in The Universe and Stuff with tags , , , , on July 1, 2010 by telescoper

New data from the European Space Agency’s Herschel Space Observatory have just been released that shed new light on a well-known gravitational lens system involving the cluster Abell 2218. You can get more details and higher-resolution pictures from the STFC press release or from the dedicated Herschel Outreach Website, but I couldn’t resist putting this nice picture up.

Image Credit: ESA/SPIRE and HERMES Consortia

This triptych shows the region of sky around the massive galaxy cluster Abell 2218, as seen by the SPIRE instrument on Herschel and by the Hubble Space Telescope. On the far left, we have images at the three SPIRE wavelength bands (in the far-infrared part of the spectrum), while the centre image is a false-colour composite. The centre of the galaxy cluster is shown as a white cross-hair, while the large orange-yellow blob just below it is a much more distant galaxy.

On the far right you can see an optical image of the same cluster taken using the Hubble Space Telescope. Working at much shorter, optical wavelengths, the resolution here is much higher. This makes it possible to see the complicated pattern of  arcs caused by the distortion of light as it travels through the gravitational field of the cluster from background sources to the observer. The cluster acts as a gigantic optical system that produces magnified but warped images of very distant galaxies that lie behind it. It’s not designed to act as proper lens, of course, so the images it produces are deformed versions of the original, but they yield sufficient clues to work out the optical properties of the gravitational lens.

Clusters like this tend to contain lots of elliptical galaxies which are not bright in the SPIRE wavebands, so what we see with Herschel is very different from the Hubble view. What Herschel has  done in this particular case is  to reveal that this  gravitational lens produces at least one bright image in the far-infrared part of the spectrum. This is produced by a very distant galaxy which we probably would not have been able to see at all, even with Herschel, had it not been located fortuitously close to a perfect alignment with the optical axis of the Abell 2218 system. Although the image we see is distorted we can still learn a lot about the source that produced using the new data.

Advertisements