Off the Main Sequence…

When I was at School, one of my English teachers enjoyed setting creative writing challenges for homework. One of the things he liked to do was to give us two apparently separate topics and get us to write a short story that managed to tie them together. Although I seldom got good marks I now realise that this is quite a useful skill to develop.  Sometimes, when I’ve been at a loss for something  to blog about, I’ve taken two items from the news and tried to link them somehow. That’s also how a lot of satire works – many of the best Private Eye skits involve putting two pieces of news together in a way that’s deliberately back to front. In fact many writers have commented along similar lines,  the most famous being E. M. Forster, whose advice to a young writer was “Only Connect”.

Yesterday the news was full of stories emanating from the discovery of a very massive star, in fact the most massive one ever found.  This news also got the Jonathan Amos treatment on the  BBC science website too. I think it’s quite an interesting discovery but it  didn’t generate much enthusiasm from Lord Rees who wrote in a Guardian article

I don’t view this discovery as a big breakthrough. It’s a bit bigger than other stars of this kind that we’ve seen and it’s nice that it involves British scientists and the world’s biggest telescope. It’s a step forward, but it is not more than an incremental advance in our knowledge.

What’s interesting about this star is that it may shed some light – actually, rather a lot of light, because it’s 10,000,000 times brighter than the Sun – on the properties of very big stars as well as possibly how they form.

There was even an item on local radio last night, which reported

The biggest star ever discovered was recently found by astronomers in Sheffield.

You’d think if it was that bright and so nearby somebody in Sheffield would have noticed it long before now…

A star this big – about 300 times the mass of the Sun – operates on the same basic mechanism as the Sun but the quantitative details are very different. Its surface temperature is about 40,000 Kelvin compared to the Sun’s, which is only about 6000K, so the radiation field it generates is very much more powerful. It’s also very much larger, probably about 50 times the Sun’s radius, so there’s more surface area to radiate. It’s a very big and very bright beastie.

The name of this star is R136a1 but given its new status as media star, it really needs a better one. In fact, there’s a suggestions page here. Let me see. Overweight and prominent in the media? No Eamonn Holmes gags please.

A star is basically just a ball of hot gas which exerts pressure forces that balance the force of gravity, which tries to make it collapse, in a form of hydrostatic equilibrium. With so much mass to hold up the pressure in the centre of the star has to be very large, and it therefore has to be very hot. The energy needed to keep it hot comes from nuclear reactions that mainly burn hydrogen to make helium (as in the Sun), but the rate of these processes is sensitively dependent on the temperature and density in the star’s core. The Sun is a relatively sedate pressure-cooker that will  simmer away for billions of years. A monster like the one just found guzzles fuel at such a rate that its lifetime will only be a few million years. Like megastars in other fields, this one will live fast and die young.

Nobody really knows how big the biggest star should be. Very big stars are produce such intense radiation that radiation pressure is more important than gas pressure in supporting the star against collapse, but if the star is too big (and therefore too hot) then the radiation field will blow the star apart. This is when the so-called Eddington Limit is reached.  Where the line is drawn isn’t all that clear. The new star  suggests that it is a bit higher up the mass scale than previously thought. I think it’s interesting.

I’ve written about this star partly to make a point about how wonderful astronomy is for teaching physics. To understand how a star works you need to take into account thermal physics, gravity, nuclear physics, radiative transport and whole load of other things besides. Putting all that physics together to produce a stellar model is a great way to illustrate the much-neglected synthetic (rather than analytic) side of (astro)physical theory education. Stars are good.

Cue cheesy link to another item.

The single biggest step towards the understanding of stellar structure and evolution was the Hertzsprung-Russel diagram, or HR diagram for short, which shows that there is a Main Sequence of stars (to which the Sun belongs). Main sequence stars have luminosities and temperatures that are related to each other because they are both determined by the star’s mass. That’s because they’re all described by the same basic physics – hydrostatitic equilibrium, nuclear burning, etc – but just come in different masses. They adjust their temperature and luminosity in order to find an equilibrium configuration.

Not all stars are main sequence stars, however. There are classes of stars with different things going on and these lie in other regions of the HR diagram.

With this in mind, the Astronomy Blog has constructed an amusing career-related version of the HR diagram which I’ve reproduced here:

Instead of plotting temperature against luminosity (or, to be precise, colour against magnitude) as in the standard version this one plots academic publications against google hits, which purport to be a measure of “fame”. A traditional academic will presumably acquire fame through their publications only, thus defining a main sequence, whereas some lie off that sequence because of media work, blogging, or (perhaps) involvement in a juicy sex scandal. I don’t think fame and notoriety are distinguished in this calculation.

I know quite a few colleagues have been quietly calculating where they lie on the above diagram, as indeed have I. Vanity, you see, is very contagious. I’m not named on the version shown, but I can tell you that I’m much more famous than Andy Lawrence, who is. So there.


11 Responses to “Off the Main Sequence…”

  1. telescoper Says:

    I’ll have you know I was once described in the press as a “luminary”. I still have the cutting, in fact. I’ll admit, though, that few would be likely to regard me as “hot” so that constrains my position in the HR diagram.

  2. Apparently there are 453,000 pages about me and I have 458 refereed publications, dating back to 1855.

  3. […] This post was mentioned on Twitter by Paul Crowther, Peter Coles. Peter Coles said: Off the Main Sequence…: […]

  4. telescoper Says:

    There’s a problem with the above diagram. If you search for “Peter Coles” on you find about 33,000 whereas on in climbs to 144,000. Of course not all of those are references to me, which is another flaw. Some names are hardly different between the two versions of google. It’s a bit strange, but it’s just a bit of fun anyway…

  5. Rhodri Evans Says:

    My name would be found in the brown dwarf (failed star) part of the diagram if it bothered to go that low.

    I’m sure “Peter Coles sex addict” would narrow down the hits to you Peter 🙂

  6. astrofairy Says:

    This is where any kind of metric falls apart. Although worryingly, to see where I am on this diagram (north of Career main sequence but slightly south of Jill Tarter) I did my google search (in quotes) which came up with 9,000 hits. Randomly sampling these hits (just going through random pages) and it seems like most of them are actually about me. Put in astronomer at the end and it goes down to 2000, putting me close to the Main Career Sequence. Very strange as I’m not famous for anything!

    If you add astronomy to the end of your name peter – you only get 6000 google hits, which is still more than The e-astronomer with “astronomy”. 🙂

    • telescoper Says:

      Yes, there’s lots of problems with it. I’m rarely referred to as an astronomer, for one thing, astrophysics or cosmology would probably be more accurate. I also have some refereed publications in fields outside ADS, but that only changes my paper stats by a small amount and makes no difference on a log scale.

      Hopefully, though, nobody will take this seriously so it’s not worth worrying too much about it!

  7. Steve Jones Says:

    and astronomers would tend to move along the main sequence as their career progresses whereas stars absolutely don’t do that – they stay put.


    Steve (Brown Dwarf)
    Spectral type T9V

  8. Oooh – I’m just south east of Academic Giants.

    Does Brian Cox really have only 20 papers?

    • telescoper Says:

      He’s probably not got many on ADS, which I think was what was used to make this, because he’s not actually an astronomer.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: