Archive for December 21, 2018

The Gatwick Drone Mystery

Posted in Uncategorized with tags , on December 21, 2018 by telescoper

I got home from work this evening to hear that flights to and from Gatwick Airport suspended again because of drones being sighted in the vicinity.

I feel very sorry for the people whose travel plans have been so badly disrupted, but having seen the picture below on the BBC website I’m baffled as to why the security services have been unable to locate the man responsible. Surely a man of that size should be easy to find?

The Winter Solstice 2018

Posted in The Universe and Stuff with tags , , , , , , on December 21, 2018 by telescoper

The winter solstice in the Northern hemisphere happens today, Friday 21st December 2018, at 22.23 Irish Time (22.23 UTC). Among other things, this means that today is the shortest day of the year. Days will get longer from now until the Summer Solstice next June.  In fact, the interval between sunrise and sunset tomorrow will be a whole second longer tomorrow than it is today. Yippee!

This does not mean that sunrise will happen earlier tomorrow than it did this morning, however. Actually, sunrise will carry on getting later until the new year. This is because there is a difference between mean solar time (measured by clocks) and apparent solar time (defined by the position of the Sun in the sky), so that a solar day does not always last exactly 24 hours. A description of apparent and mean time was given by Nevil Maskelyne in the Nautical Almanac for 1767:

Apparent Time is that deduced immediately from the Sun, whether from the Observation of his passing the Meridian, or from his observed Rising or Setting. This Time is different from that shewn by Clocks and Watches well regulated at Land, which is called equated or mean Time.

The discrepancy between mean time and apparent time arises because of the Earth’s axial tilt and the fact that it travels around the Sun in an elliptical orbit in which its orbital speed varies with time of year (being faster at perihelion than at aphelion).

In fact if you plot the position of the Sun in the sky at a fixed time each day from a fixed location on the Earth you get a thing called an analemma, which is a sort of figure-of-eight shape whose shape depends on the observer’s latitude. Here’s a photographic version taken in Edmonton, with photographs of the Sun’s position taken from the same position at the same time on different days over the course of a year:


The winter solstice is the lowermost point on this curve and the summer solstice is at the top. The north–south component of the analemma is the Sun’s declination, and the east–west component is the so-called equation of time which quantifies the difference between mean solar time and apparent solar time. This curve can be used to calculate the earliest and/or latest sunrise and/or sunset.

Using a more rapid calculational tool (Google), I found a table of the local mean times of sunrise and sunset for Dublin around the 2018 winter solstice. This shows that today is indeed the shortest day (with a time between sunrise and sunset of 7 hours 29 minutes and 59 seconds).  The table also shows that sunset already started occurring later in the day before the winter solstice, and sunrise will continue to happen later for a few days after the solstice, notwithstanding the fact that the interval between sunrise and sunset gets longer from today onwards.

I hope this clarifies the situation.