Archive for December 2, 2020

Cosmology Talks: Eiichiro Komatsu & Yuto Minami on Parity Violation in the Cosmic Microwave Background

Posted in Cardiff, Maynooth, The Universe and Stuff with tags , , , , , , , , on December 2, 2020 by telescoper

It’s time I shared another one of those interesting cosmology talks on the Youtube channel curated by Shaun Hotchkiss. This channel features technical talks rather than popular expositions so it won’t be everyone’s cup of tea but for those seriously interested in cosmology at a research level they should prove interesting.

In this video, Eiichiro Komatsu and Yuto Minami talk about their recent work, first devising a way to extract a parity violating signature in the cosmic microwave background, as manifested by a form of birefringence. If the universe is birefringent then E-mode polarization would change into B-mode as electromagnetic radiation travels through space, so there would be a non-zero correlation between the two measured modes. They  try to measure this correlation using the Planck 2018 data, getting  a 2.4 sigma `hint’ of a result.

A problem with the measurement is that systematic errors, such as imperfectly calibrated detector angles,  could mimic the signal. Yuto and Eiichiro’s  idea was to measure the detector angle by looking at the E-B correlation in the foregrounds, where light hasn’t travelled far enough to be affected by any potential birefringence in the universe. They argue that this allows them to distinguish between the two types of measured E-B correlation. However, this is only the case if there is no intrinsic correlation between the E-mode and B-mode polarization in the foregrounds, which may not be the case, but which they are testing. The method can be applied to any of the plethora of CMB experiments currently underway so there will probably be more results soon that may shed further light on this issue.

Incidentally this reminds me of Cardiff days when work was going on about the same affect using the Quad instrument. I wasn’t involved with Quad but I do remember having interesting chats about the theory behind the measurement or upper limit as it was (which is reported here). Looking at the paper I realize that paper involved researchers from the Department of Experimental Physics at Maynooth University.

P. S. The paper that accompanies this talk can be found here.