Archive for the The Universe and Stuff Category

Is Dark Matter a Superfluid?

Posted in The Universe and Stuff with tags , , , , , , on May 22, 2018 by telescoper

In between marking exams and project reports I’ve been doing a little bit of reading in preparation for a talk that I’m due to give next week, which prompted me to share this talk by Justin Khoury of the University of Pennsylvania, which is about framework that unifies the claimed success of Modified Newtonian Dynamics (MOND) on galactic scales with the that of the standard ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of observational signatures, discussed in the talk.

The idea that dark matter might be in the form of a superfluid is not new (see e.g. this paper) but there has been a recent surge of interest driven largely by Khoury and collaborators. If you want to find out more, can find a review paper about this model here.

Advertisements

Planck wins the Gruber Prize (and the Shaw Prize)

Posted in Science Politics, The Universe and Stuff with tags , , on May 13, 2018 by telescoper

I forgot to mention last week that the 2018 Gruber Prize for Cosmology has been awarded to the Planck team, and its Principal Investigators Nazzareno Mandolesi and Jean-Loup Puget.

For more information about the award and the citation, see here.

This annual prize is worth $500,00; the two PIs will get $125,000 each and the rest divided among the team. I’m not sure whether this means the Planck Science Team (whose membership is listed here or the entire Planck Collaboration (which numbers several hundred people) but regardless of whoever gets the actual dosh, this award provides a good excuse to send congratulations to everyone who worked on this brilliant and highly successful mission!

 

UPDATE: 14th May 2018. Jean-Loup Puget has also been awarded the Shaw Prize for Astronomy.

Revisionist (Thermal) History of the Universe

Posted in Biographical, Cardiff, Education, The Universe and Stuff with tags , , on May 10, 2018 by telescoper

Well, today saw my last teaching session on my Cardiff University module Physics of the Early Universe. It was actually an optional revision lecture, during which I went through questions on last year’s examination paper, some matters arising therefrom and some general tips on `examination technique’. The latter included advice that seems obvious – such as `read the question carefully’ and `check your numerical answers’ – but that surprisingly many students seem not to have heard before or, if they have, choose not to follow!

Anyway, I hope the students who came today found it useful and I hope that they (and indeed everyone else taking examinations over the next few weeks) do themselves proper justice and get the results they need for whatever comes next in their plans.

The Physics of the Early Universe paper is a couple of weeks ago so no doubt I’ll get a few more queries to deal with before then.

I thought I’d give an idea of the stuff I’ve been teaching here by including one of the questions from last year’s paper. I thought this was quite an easy one, actually, but the students seemed to find it tricky while they mostly coped well with the other questions, which I thought were harder. One of the challenges of teaching is that it’s often hard to see what other people find difficult! See what you think. You don’t really need to know much cosmology to do this:

Anyway, today was not only the last teaching session for this particular module – it’s also the last teaching session I’ll ever conduct in the UK university system. Best wishes to whoever it is that teaches this module next year when I’m in Ireland.

Celebrating the Sloan Telescope

Posted in The Universe and Stuff with tags , , , , , , , , on May 9, 2018 by telescoper

A little bird tweeted at me this morning that today is the 20th anniversary of first light through the Sloan Telescope (funded by the Alfred P. Sloan Foundation) which has, for the past two decades, been surveying as much of the sky as it can from its location in New Mexico (about 25% altogether): the Sloan Digital Sky Survey is now on its 14th data release.

Here’s a picture of the telescope:

For those of you who want the optical details, the Sloan Telescope is a 2.5-m f/5 modified Ritchey-Chrétien altitude-azimuth telescope located at Apache Point Observatory, in south east New Mexico (Latitude 32° 46′ 49.30″ N, Longitude 105° 49′ 13.50″ W, Elevation 2788m). A 1.08 m secondary mirror and two corrector lenses result in a 3° distortion-free field of view. The telescope is described in detail in a paper by Gunn et al. (2006).

A 2.5m telescope of modest size by the standards of modern astronomical research, but the real assets of the Sloan telescope is a giant mosaic camera, highly efficient instruments and a big investment in the software required to generate and curate the huge data sets it creates. A key feature of SDSS is that its data sets are publicly available and, as such, they have been used in countless studies by a huge fraction of the astronomical community.

The Sloan Digital Sky Survey’s original `legacy’ survey was basically a huge spectroscopic redshift survey, mapping the positions of galaxies and quasars in three dimensions to reveal the `cosmic web’ in unprecedented detail:

As it has been updated and modernised, the Sloan Telescope has been involved in a range of other surveys aimed at uncovering different aspects of the universe around us, including several programmes still ongoing.

Stars Dance to the Music of Parallax

Posted in The Universe and Stuff with tags , , on May 3, 2018 by telescoper

I thought I’d share this cute video from the European Space Agency about the Gaia mission I blogged about last week. It shows the effect of parallax, as measured by Gaia, on the positions of stars on the sky. As the Earth orbits the Sun stars do a dance in the sky; the shift in their position greater for closer stars rather than distant ones. To make the video, parallaxes measured by Gaia have been exaggerated by a factor 100,000 and proper motions have been speeded up by one trillion (1012). The effect is rather hypnotic, and gives a sense of the three-dimensional nature of the distribution of stars. At the end of the video you can see the effect of proper motions too, i.e. the change in position of a star due to its actual motion rather than that of the observer.

Hubble Constant Catch-Up

Posted in Bad Statistics, The Universe and Stuff with tags , , , , on May 2, 2018 by telescoper

Last week when I wrote about the 2nd Data Release from Gaia, somebody emailed me to ask whether the new results said anything about the cosmological distance ladder and hence the Hubble Constant. As far as I could see, no scientific papers were released on this topic at the time and I thought there probably wasn’t anything definitive at this stage. However, it turns out that there is a paper now, by Riess et al., which focuses on the likely impact of Gaia on the Cepheid distance scale. Here is the abstract:

We present HST photometry of a selected sample of 50 long-period, low-extinction Milky Way Cepheids measured on the same WFC3 F555W, F814W, and F160W-band photometric system as extragalactic Cepheids in SN Ia hosts. These bright Cepheids were observed with the WFC3 spatial scanning mode in the optical and near-infrared to mitigate saturation and reduce pixel-to-pixel calibration errors to reach a mean photometric error of 5 millimags per observation. We use the new Gaia DR2 parallaxes and HST photometry to simultaneously constrain the cosmic distance scale and to measure the DR2 parallax zeropoint offset appropriate for Cepheids. We find a value for the zeropoint offset of -46 +/- 13 muas or +/- 6 muas for a fixed distance scale, higher than found from quasars, as expected, for these brighter and redder sources. The precision of the distance scale from DR2 has been reduced by a factor of 2.5 due to the need to independently determine the parallax offset. The best fit distance scale is 1.006 +/- 0.033, relative to the scale from Riess et al 2016 with H0=73.24 km/s/Mpc used to predict the parallaxes photometrically, and is inconsistent with the scale needed to match the Planck 2016 CMB data combined with LCDM at the 2.9 sigma confidence level (99.6%). At 96.5% confidence we find that the formal DR2 errors may be underestimated as indicated. We identify additional error associated with the use of augmented Cepheid samples utilizing ground-based photometry and discuss their likely origins. Including the DR2 parallaxes with all prior distance ladder data raises the current tension between the late and early Universe route to the Hubble constant to 3.8 sigma (99.99 %). With the final expected precision from Gaia, the sample of 50 Cepheids with HST photometry will limit to 0.5% the contribution of the first rung of the distance ladder to the uncertainty in the Hubble constant.

So, nothing definitive yet but potentially very interesting in the future and this group, led by Adam Riess, is now claiming a 3.8σ tension between measurements of the Hubble constant from cosmic microwave background measurements and from traditional `distance ladder’ approaches, though to my mind this is based on some rather subjective judgements.

The appearance of that paper reminded me that I forgot to post about a paper by Bernal & Peacock that appeared a couple of months ago. Here is the abstract of that one:

When combining data sets to perform parameter inference, the results will be unreliable if there are unknown systematics in data or models. Here we introduce a flexible methodology, BACCUS: BAyesian Conservative Constraints and Unknown Systematics, which deals in a conservative way with the problem of data combination, for any degree of tension between experiments. We introduce hyperparameters that describe a bias in each model parameter for each class of experiments. A conservative posterior for the model parameters is then obtained by marginalization both over these unknown shifts and over the width of their prior. We contrast this approach with an existing hyperparameter method in which each individual likelihood is scaled, comparing the performance of each approach and their combination in application to some idealized models. Using only these rescaling hyperparameters is not a suitable approach for the current observational situation, in which internal null tests of the errors are passed, and yet different experiments prefer models that are in poor agreement. The possible existence of large shift systematics cannot be constrained with a small number of data sets, leading to extended tails on the conservative posterior distributions. We illustrate our method with the case of the H0 tension between results from the cosmic distance ladder and physical measurements that rely on the standard cosmological model.

This paper addresses the long-running issue of apparent tension in different measurements of the Hubble constant that I’ve blogged about before (e.g. here) by putting the treatment of possible systematic errors into a more rigorus and consistent (i.e. Bayesian) form. It says what I think most people in the community privately think about this issue, i.e. that it’s probably down to some sort of unidentified systematic rather than exotic physics.

The title of the paper includes the phrase `Conservative Cosmology’, but I think that’s a bit of a misnomer. I think `Sensible Cosmology’. Current events suggest `conservative’ and `sensible’ have opposite meanings. You can find a popular account of it here, from which I have stolen this illustration of the tension:

A chart showing the two differing results for the Hubble constant – The expansion rate of the universe (in km/s/Mpc)
Result 1: 67.8 ± 0.9 Cosmic microwave background
Result 2: 73.52 ± 1.62 Cosmic distance ladder

Anyway, I have a poll that has been going on for some time about whether this tension is anything to be excited about, so why not use this opportunity cast your vote?

Gaia’s Second Data Release!

Posted in The Universe and Stuff with tags , , , on April 26, 2018 by telescoper

It seems like only yesterday that I was blogging excitedly about the first release of data (DR1) from the European Space Agency’s Gaia Mission. In fact it was way back in 2016! Anyway, yesterday came another glut of Gaia goodness in the form of the second release of data, known to its friends as DR2.

In case you weren’t aware, Gaia is an ambitious space mission to chart a three-dimensional map of our Galaxy, the Milky Way, in the process revealing the composition, formation and evolution of the Galaxy. Gaia will provide unprecedented positional and radial velocity measurements with the accuracy needed to produce a stereoscopic and kinematic census of about one billion stars in our Galaxy and throughout the Local Group. This amounts to about 1 per cent of the Galactic stellar population.

You can find links to all the DR2 science papers here, a guide to how to use the data here, and of course a link to the full Gaia Archive here.

Here’s a (brief!) list of the contents of DR2:

  • The five-parameter astrometric solution – positions on the sky (α, δ), parallaxes, and proper motions – for more than 1.3 billion (109) sources, with a limiting magnitude of G = 21 and a bright limit of G ≈ 3. Parallax uncertainties are in the range of up to 0.04 milliarcsecond for sources at G < 15, around 0.1 mas for sources with G=17 and at the faint end, the uncertainty is of the order of 0.7 mas at G = 20. The corresponding uncertainties in the respective proper motion components are up to 0.06 mas yr-1 (for G < 15 mag), 0.2 mas yr-1 (for G = 17 mag) and 1.2 mas yr-1 (for G = 20 mag). The Gaia DR2 parallaxes and proper motions are based only on Gaia data; they do no longer depend on the Tycho-2 Catalogue.
  • Median radial velocities (i.e. the median value over the epochs) for more than 7.2 million stars with a mean G magnitude between about 4 and 13 and an effective temperature (Teff) in the range of about 3550 to 6900 K. This leads to a full six-parameter solution: positions and motions on the sky with parallaxes and radial velocities, all combined with mean G magnitudes. The overall precision of the radial velocities at the bright end is in the order of 200-300 m s-1 while at the faint end the overall precision is approximately 1.2 km s-1 for a Teff of 4750 K and about 2.5 km s-1 for a Teff of 6500 K.
  • An additional set of more than 361 million sources for which a two-parameter solution is available: the positions on the sky (α, δ) combined with the mean G magnitude. These sources have a positional uncertainty at G=20 of about 2 mas, at J2015.5.
    G magnitudes for more than 1.69 billion sources, with precisions varying from around 1 milli-mag at the bright (G<13) end to around 20 milli-mag at G=20. Please be aware that the photometric system for the G band in Gaia DR2 is different from the photometric system as used in Gaia DR1.
  • GBP and GRP magnitudes for more than 1.38 billion sources, with precisions varying from a few milli-mag at the bright (G<13) end to around 200 milli-mag at G=20.
  • Full passband definitions for G, BP and RP. These passbands are now available for download.
  • Epoch astrometry for 14,099 known solar system objects based on more than 1.5 million CCD observations. 96% of the along-scan (AL) residuals are in the range -5 to 5 mas, and 52% of the AL residuals are in the range of -1 to 1 mas. The transit observations are part of Gaia DR2 and have also been delivered to the Minor Planet Center (MPC).
  • Subject to limitations (see below) the effective temperatures Teff for more than 161 million sources brighter than 17th magnitude with effective temperatures in the range 3000 to 10,000 K. For a subset of about 87 million sources also the line-of-sight extinction AG and reddening E(BP-RP) are given and for a part of this subset (around 76 million sources) the luminosity and radius are available as well.
  • Classifications for more than 550,000 variable sources consisting of Cepheids, RR Lyrae, Mira and Semi-Regular Candidates as well as High-Amplitude Delta Scuti, BY Draconis candidates, SX Phoenicis Candidates and short time scale phenomena.
  • Planned cross-matches between Gaia DR2 sources on the one hand and Hipparcos-2, Tycho-2, 2MASS PSC, SDSS DR9, Pan-STARRS1, GSC2.3, PPM-XL, AllWISE, and URAT-1 data on the other hand.

There’s much more to Gaia than pictures, but here’s a map of the stars in our galaxy to give you an idea:

I remember first hearing about Gaia about 17 years ago when I was on a PPARC advisory panel and was immediately amazed  by the ambition of its objectives. As I mentioned above, Gaia is a global space astrometry mission, which will make the largest, most precise three-dimensional map of our Galaxy by surveying more than a billion stars. In some sense Gaia is the descendant of the Hipparcos mission launched in 1989, but it’s very much more than that. Gaia monitors each of its target stars about 70 times over a five-year period. It is expected to discover hundreds of thousands of new celestial objects, such as extra-solar planets and brown dwarfs, and observe hundreds of thousands of asteroids within our own Solar System. The mission is also expected to yield a wide variety of other benefits, including new tests of the  General Theory of Relativity.

For the brighter objects, i.e. those brighter than magnitude 15, Gaia  measures their positions to an accuracy of 24 microarcseconds, comparable to measuring the diameter of a human hair at a distance of 1000 km. Distances of relatively nearby stars are measured to an accuracy of 0.001%. Even stars near the Galactic Centre, some 30,000 light-years away, have their distances measured to within an accuracy of 20%.

It’s an astonishing mission that will leave an unbelievably rich legacy not only for the astronomers working on the front-line operations of Gaia but for generations to come.