Archive for black holes

What to do if you find yourself inside the horizon of a black hole

Posted in The Universe and Stuff with tags , , , on May 7, 2019 by telescoper

Consider how lucky you are that life has been good to you so far.

Alternatively, if life hasn’t been good to you so far – which, given your current circumstances seems more likely – consider how lucky you are that it won’t be bothering you much longer.

That was the advice given to Ford Prefect by The Hitchhikers Guide to the Galaxy when he looked up `What do if you find yourself in a crack in the ground underneath a giant boulder you can’t move with no hope of rescue’. It seems fairly general advice to me, though. If you want more specific advice on what to do if you find yourself inside the horizon of a black hole then you can find it in an interesting paper on the arXiv with the abstract:

In this methodological paper we consider two problems an astronaut faces with under the black hole horizon in the Schwarzschild metric. 1) How to maximize the survival proper time. 2) How to make a visible part of the outer Universe as large as possible before hitting the singularity. Our consideration essentially uses the concept of peculiar velocities based on the “river model”. Let an astronaut cross the horizon from the outside. We reproduce from the first principles the known result that point 1) requires that an astronaut turn off the engine near the horizon and follow the path with the momentum equal to zero. We also show that point 2) requires maximizing the peculiar velocity of the observer. Both goals 1) and 2) require, in general, different strategies inconsistent with each other that coincide at the horizon only. The concept of peculiar velocities introduced in a direct analogy with cosmology, and its application for the problems studied in the present paper can be used in advanced general relativity courses.

It is advertised as a `methodological paper’ and I don’t know if they are planning experimental studies of this problem. I imagine might be difficult to secure funding.

Advertisements

On the Fellowship of Roy Kerr

Posted in The Universe and Stuff with tags , , , , , , , on April 18, 2019 by telescoper

Among the new Fellows of the Royal Society announced this week, I was astonished to see the name of Roy Kerr, the man who gave his name to the Kerr Metric an exact solution of Einstein’s equations of general relativity which describes the geometry of space-time around a rotating black hole.

When I say “astonished” I don’t mean that Kerr does not deserve this recognition. Far from it. I’m astonished because it has taken so long:the Kerr solution was published way back in 1963.

Anyway, better late than never, and heartiest congratulations to him!

While I’m on about Roy Kerr I’ll also say that I now think there is a very strong case for him to be awarded a Nobel Prize. The reasons are twofold.

One is that all the black hole binary systems whose coalescences produced gravitational waves detected by LIGO have involved Kerr black holes. Without Kerr’s work it would not have been possible to construct the template waveforms needed to extract signals from the LIGO data.

Second, and even more topically, the black hole in M87 recently imaged (above) by the Event Horizon Telescope is also described by the Kerr geometry. Without Kerr’s work the modelling of light paths around this object would not have been possible either.

The Shadow of an Event Horizon

Posted in The Universe and Stuff with tags , , , , , on April 9, 2019 by telescoper

There is a paper on the arXiv written about 5 years ago called Towards the event horizon – the supermassive black hole in the Galactic Center by Falcke and Markoff, the abstract of which reads:

The center of our Galaxy hosts the best constrained supermassive black hole in the universe, Sagittarius A* (Sgr A*). Its mass and distance have been accurately determined from stellar orbits and proper motion studies, respectively, and its high-frequency radio, and highly variable near-infrared and X-ray emission originate from within a few Schwarzschild radii of the event horizon. The theory of general relativity (GR) predicts the appearance of a black hole shadow, which is a lensed image of the event horizon. This shadow can be resolved by very long baseline radio interferometry and test basic predictions of GR and alternatives thereof. In this paper we review our current understanding of the physical properties of Sgr A*, with a particular emphasis on the radio properties, the black hole shadow, and models for the emission and appearance of the source. We argue that the Galactic Center holds enormous potential for experimental tests of black hole accretion and theories of gravitation in their strong limits.

Please note that the black hole in the centre of the giant elliptical galaxy M87 is about 1000 times further away from us than the black hole in the centre of the Milky Way but is also about 1000 times more massive, so its Schwarzschild radius is 1000 times larger. The observational challenge of imaging the event horizon is therefore similar in the two cases.

You may find this useful if, by sheer coincidence, there is some big announcement tomorrow..

Simulation of the binary black-hole coalescence GW170104

Posted in The Universe and Stuff with tags , , , on June 2, 2017 by telescoper

Via the Cardiff University news website, I found this video of a computer simulation of the binary black-hole coalescence that gave rise to the gravitational wave event GW170104 whose detection was announced yesterday, so I thought I’d share it here.

Here’s the  blurb accompanying the video:

The video shows a numerical simulation of a binary black-hole coalescence with masses and spins consistent with the GW170104 observation. The strength of the gravitational wave is indicated by elevation as well as color, with blue indicating weak fields and yellow indicating strong fields. We rescale the amplitude of the gravitational wave during the simulation to show the signal during the entire animation not only close to merger, where it is strongest. The sizes of the black holes are increased by a factor of two to improve visibility. The bottom panel in the video shows the gravitational waveform starting at frequency of 25Hz. The fade in of the video corresponds to a frequency of about 30Hz.

© Numerical-relativistic simulation: S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics) and the Simulating eXtreme Spacetimes project; scientific visualization: T. Dietrich (Max Planck Institute for Gravitational Physics), R. Haas (NCSA).

The colour scheme gives me a headache, and there’s no sountrack, but it’s quite instructive nonetheless.

 

Stephen Hawking’s Reith Lectures

Posted in Biographical, The Universe and Stuff with tags , , , , on January 8, 2016 by telescoper

Yesterday I took off early from work to head up to the Royal Institution in London to attend a recording of the Reith Lectures, this year given by Stephen Hawking.

Here’s a rather crappy phone pic to show I was there.

image

In fact they recorded two of this year’s lectures, as well as a lengthy question-and-answer session. The talks and answers to audience questions did of course have to be pre-loaded into Stephen’s computer before delivery which necessitated some pauses for uploads. This together with the recording of various intros, outros and idents made for quite a lengthy event but I found the whole process fascinating and didn’t mind that at all. I did have three glasses of wine at the drinks reception before the show, however, so was in quite a relaxed frame of mind generally.

In charge of the whole thing was the inestimable Sue Lawley who did her job brilliantly. On a few occasions, Stephen Hawking’s computer had a glitch and made a spontaneous interjection in an inappropriate place. Sue Lawley proved  completely unflappable.

The topic for the series is, not surprisingly because it is what Hawking is most closely associated with, Black Holes. The lectures were enjoyably sprinkled with some very witty asides, but I did get surprisingly technical at a few points; the audience members beside me were visibly baffled on more than one occasion. See what you think yourself when the lectures are broadcast, the first on 26th January and the second a week later, both at 9pm on BBC Radio 4. They will also be broadcast on the BBC World Service.

The Reith Lectures are open to the public. Apparently over 20,000 applied for tickets to attend last night, such is the draw of Stephen Hawking. The capacity of the Royal Institution lecture theatre is only about 400 so many were disappointed. Fortunately for me, owing no doubt to some form of administrative error, I was an invited guest. I was however somewhat relieved to find I was only on the B-list so although I got to use the VIP entrance I didn’t have to sit among the big nobs at the front in reserved seats.

From Darkness to Green

Posted in History, The Universe and Stuff with tags , , , , , , , , , , on March 7, 2014 by telescoper

On Wednesday this week I spent a very enjoyable few hours in London attending the Inaugural Lecture of Professor Alan Heavens at South Kensington Technical College Imperial College, London. It was a very good lecture indeed, not only for its scientific content but also for  the plentiful touches of droll humour in which Alan specialises. It was also followed by a nice drinks reception and buffet. The talk was entitled Cosmology in the Dark, so naturally I had to mention it on this blog!

At the end of the lecture, the vote of thanks was delivered in typically effervescent style by the ebullient Prof. Malcolm Longair who actually supervised Alan’s undergraduate project at the Cavendish laboratory way back in 1980, if I recall the date correctly. In his speech, Malcolm referred to the following quote from History of the Theories of the Aether and Electricity (Whittaker, 1951) which he was kind enough to send me when I asked by email:

The century which elapsed between the death of Newton and the scientific activity of Green was the darkest in the history of (Cambridge) University. It is true that (Henry) Cavendish and (Thomas) Young were educated at Cambridge; but they, after taking their undergraduate courses, removed to London. In the entire period the only natural philosopher of distinction was (John) Michell; and for some reason which at this distance of time it is difficult to understand fully, Michell’s researches seem to have attracted little or no attention among his collegiate contemporaries and successors, who silently acquiesced when his discoveries were attributed to others, and allowed his name to perish entirely from the Cambridge tradition.

I wasn’t aware of this analysis previously, but it re-iterates something I have posted about before. It stresses the enormous historical importance of British mathematician and physicist George Green, who lived from 1793 until 1841, and who left a substantial legacy for modern theoretical physicists, in Green’s theorems and Green’s functions; he is also credited as being the first person to use the word “potential” in electrostatics.

Green was the son of a Nottingham miller who, amazingly, taught himself mathematics and did most of his best work, especially his remarkable Essay on the Application of mathematical Analysis to the theories of Electricity and Magnetism (1828) before starting his studies as an undergraduate at the University of Cambridge which he did at the age of 30. Lacking independent finance, Green could not go to University until his father died, whereupon he leased out the mill he inherited to pay for his studies.

Extremely unusually for English mathematicians of his time, Green taught himself from books that were published in France. This gave him a huge advantage over his national contemporaries in that he learned the form of differential calculus that originated with Leibniz, which was far more elegant than that devised by Isaac Newton (which was called the method of fluxions). Whittaker remarks upon this:

Green undoubtedly received his own early inspiration from . . . (the great French analysts), chiefly from Poisson; but in clearness of physical insight and conciseness of exposition he far excelled his masters; and the slight volume of his collected papers has to this day a charm which is wanting in their voluminous writings.

Great scientist though he was, Newton’s influence on the development of physics in Britain was not entirely positive, as the above quote makes clear. Newton was held in such awe, especially in Cambridge, that his inferior mathematical approach was deemed to be the “right” way to do calculus and generations of scholars were forced to use it. This held back British science until the use of fluxions was phased out. Green himself was forced to learn fluxions when he went as an undergraduate to Cambridge despite having already learned the better method.

Unfortunately, Green’s great pre-Cambridge work on mathematical physics didn’t reach wide circulation in the United Kingdom until after his death. William Thomson, later Lord Kelvin, found a copy of Green’s Essay in 1845 and promoted it widely as a work of fundamental importance. This contributed to the eventual emergence of British theoretical physics from the shadow cast by Isaac Newton which reached one of its heights just a few years later with the publication a fully unified theory of electricity and magnetism by James Clerk Maxwell.

But as to the possible reason for the lack of recognition for John Michell who was clearly an important figure in his own right (he was the person who first developed the concept of a black hole, for example) you’ll have to read Malcolm Longair’s forthcoming book on the History of the Cavendish Laboratory!

Did Hawking Say “There Are No Black Holes”?

Posted in Astrohype, The Universe and Stuff with tags , , , on February 5, 2014 by telescoper

Last week there was a rather tedious flurry of media activity about Stephen Hawking’s alleged claim that there are no black holes after all. Here’s a nice blog post explaining what Hawking actually said. Also, check out the link at the start of this article to a very nice layperson’s guide to the Black Hole Information Paradox.

Of Particular Significance

Media absurdity has reached new levels of darkness with the announcement that Stephen Hawking has a new theory in which black holes do not exist after all.

No, he doesn’t.

[Note added: click here for my new introduction to the black hole information paradox.]

First, Hawking does not have a new theory… at least not one he’s presented. You can look at his paper here — two pages (pdf), a short commentary that he gave to experts in August 2013 and wrote up as a little document — and you can see it has no equations at all. That means it doesn’t qualify as a theory. “Theory”, in physics, means: a set of equations that can be used to make predictions for physical processes in a real or imaginary world. When we talk about Einstein’s theory of relativity, we’re talking about equations. Compare just the look and…

View original post 979 more words