Archive for Charles Wang

What’s with the Wang Particle?

Posted in Astrohype, The Universe and Stuff with tags , , , , , , on September 11, 2012 by telescoper

Not long ago a colleague ran into my office all of a flutter and asked me about this new discovery called the “Wang particle” that had been in the media. I’m the one around here who’s supposed to know about particle astrophysics stuff, so I was quite embarrassed that I’d never heard of the Wang particle, although I’ll be delighted if it becomes famous as the name has a great deal of comedy potential.

Anyway, I vowed to find out a little bit about it and finally got around this lunchtime to doing so. It turns out that the story was sparked by press release from the British Science Association which, out of the goodness of my heart, I reproduce below (link added by me).

 A new particle, similar to the Higgs Boson, could provide a clue to one of the greatest mysteries of the Universe.

Dr Charles Wang from the University of Aberdeen believes that a new scalar particle is behind the intense supernova explosions that occur when a star implodes. He presented his work to the British Science Association on Tuesday.

Supernova explosions are the most powerful forces in the universe, second only to the Big Bang.

Once frequent, the energy produced in these explosions is responsible for combining particles to produce all the recognisable elements on earth, providing all the known building blocks of life on earth.

There are still many gaps in our understanding of physics and one of the major blanks is how the implosion of a star subsequently produces an intense explosion.

It is known that as elements are created at the centre of a star, a huge amount of energy is released.  However, it is believed that the conversion of known elements would never produce enough energy to result in an explosion.

Dr Wang’s theory states that “a scalar particle – one of the most elementary types of particles in the universe and similar to the Higgs Boson – is at work within these stars and responsible for the additional energy which causes the explosion to take place.”

The scalar particle would effectively enable the high transfer of energy during a supernova, allowing shockwaves from the implosion of a star to become re-energised and cause an explosion.

A new collaboration between Dr Wang and CERN could provide the equipment to make this theory a reality and demonstrate the existence of the ‘Wang particle’ – or as Dr Wang himself refers to it the ‘scalar gravitational particle’. It is hoped that using the ISOLDE facility at CERN it may be possible assimilate a nuclear reaction that would determine the process of a starburst.

If demonstrated, the existence of the ‘Wang particle’, like the Higgs Boson, would hold major implications for physics, shedding new light on the theory of everything and affecting our understanding of how different physical phenomena interact.

There’s no link to an academic paper with it, which is a bit disappointing, but an older piece in the CERN Courier does provide a reference to the paper, which is

C H-T Wang et al. 2011 Parametric instability induced scalar gravitational waves from a model pulsating neutron star, Phys. Letts. B 705 148

If you’re prepared to shake hands with the Devil that is Elsevier you can find the paper here.

I have to confess that this is a new one on me. I haven’t gone through the paper in detail yet but, at a quick skim, it seems to be based on a variation of the  Brans-Dicke scalar-tensor theory of gravity. It’s probably an interesting paper, and I look forward to reading it in detail on a long flight I’m about to take, but I am a bit mystified as to why it created such a stir in the media. Looks more a result of hype than real significance to me. It certainly isn’t the “new Higgs boson” anyway. Nor is it likely to be relevant in explaining Climate Change. Or am I missing something? Perhaps hot air generated by press releases is responsible for global warming?

Anyone out there an expert on Wang’s work? Care to comment?

Advertisements