Archive for concordance cosmology

WMAP: The Last Judgement

Posted in The Universe and Stuff with tags , , , , , , on December 21, 2012 by telescoper

It seems the the Wilkinson Microwave Anisotropy Probe, or rather the estimable team of people working on it, have produced yet another set of maps and key results. I believe this will be the final release from WMAP. The paper is on the arXiv here and it represents a synthesis of no less than nine years of measurements of the cosmic microwave background radiation:

Here’s the abstract:

We present the final nine-year maps and basic results from the WMAP mission. We provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate CMB anisotropy from foreground emission, and both types of signals are analyzed in detail. The WMAP mission has resulted in a highly constrained LCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that Big Bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (3.26+/-0.35). The model fit also implies that the age of the universe is 13.772+/-0.059 Gyr, and the fit Hubble constant is H0 = 69.32+/-0.80 km/s/Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity reported earlier by WMAP now has high statistical significance (n_s = 0.9608+/-0.0080); and the universe is close to flat/Euclidean, Omega_k = -0.0027 (+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter LCDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further. With no significant anomalies and an adequate goodness-of-fit, the inflationary flat LCDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

The main reason for posting this is to acknowledge the remarkable impact WMAP has had on the field of cosmology. The standard model does indeed account for most available cosmological data extremely well. I’m not entirely sure about the “no significant anomalies” bit in the last sentence, in fact, but I won’t argue with it as it depends entirely upon what you mean by significant. It’s not exactly proven that the fluctuations have “random phases” either. We’ll just have to see whether data from Planck, due to be released next year, will reveal evidence of any physics beyond the standard framework WMAP did so much to establish.

Das Letzte Gericht

Posted in Art, Astrohype, The Universe and Stuff with tags , , , on December 20, 2012 by telescoper

Apparently the world is due to end tomorrow, so I’ve saved quite a lot of money by not having done my Christmas shopping yet. Anyway, the forthcoming Apocalypse reminded me of the painting that I often use to introduce cosmology talks. I usually use this piece of Hieronymus Bosch Das letzte Gericht (The Last Judgement) to illustrate my feelings about the standard cosmological model:


The top part represents the concordance cosmology. It clearly features an eminent cosmologist surrounded by postdoctoral researchers. Everything appears to be in heavenly harmony, surrounded by a radiant glow of self-satisfaction. The trumpets represent various forms of exaggerated press coverage.

But if you step back from it, and get the whole thing in a proper perspective, you realise that there’s an awful lot going on underneath that’s not so pleasant or easy to interptet. I don’t know what’s going down below there, although the unfortunate figures slaving away in miserable conditions and suffering unimaginable torments, are obviously supposed to represent graduate students. The large knife visible in the bottom right corner clearly symbolises budget cuts looming in the next Comprehensive Spending Review.

The main point is that the concordance model is based on rather strange foundations: nobody understands what the dark matter and dark energy are, for example. Even more fundamentally, the whole thing is based on a shotgun marriage between general relativity and quantum field theory which is doomed to fail somewhere along the line.

Far from being a final theory of the Universe I think we should treat our standard model as a working hypothesis and actively look for departures from it. I’m not at all against the model. As models go, it’s very successful. It’s a good one, but it’s still just a model.

The Biggest Things in the Universe

Posted in The Universe and Stuff with tags , , , , on November 12, 2011 by telescoper

I’ve never really thought of this blog as a vehicle for promoting my own research in cosmology, but it’s been a while since I posted anything very scientific so I thought I’d put up a brief advertisement for a paper that appeared on the arXiv this week by myself and Ian Harrison (who is a PhD student of mine). Here is the abstract, which I think is pretty informative about the contents of the paper; would that were always the case!

Motivated by recent suggestions that a number of observed galaxy clusters have masses which are too high for their given redshift to occur naturally in a standard model cosmology, we use Extreme Value Statistics to construct confidence regions in the mass-redshift plane for the most extreme objects expected in the universe. We show how such a diagram not only provides a way of potentially ruling out the concordance cosmology, but also allows us to differentiate between alternative models of enhanced structure formation. We compare our theoretical prediction with observations, placing currently observed high and low redshift clusters on a mass-redshift diagram and find – provided we consider the full sky to avoid a posteriori selection effects – that none are in significant tension with concordance cosmology.

The background to this paper is that,  according to standard cosmological theory, galaxies and other large-scale structures such as galaxy clusters form hierarchically. That is to say that they are built from the bottom-up from a population of smaller objects that progressively merge  into larger and larger structures as the Universe evolves. At any given time there is a broad distribution of masses, but the average mass increases as time goes on. Looking out into the distant Universe we should therefore see fewer high-mass objects at high redshift than at low redshift.

Recent observations – I refer you to our paper for references – have revealed evidence for the existence of some very massive galaxy clusters at redshifts around unity or larger, which corresponds to a look-back time of greater than 7 Gyr. Actually these are not at high redshift compared to galaxies, which have bee found at redshifts around 10, where the lookback time is more like 12 Gyr, but these are at least a thousand times less massive than large clusters so their existence in the early Universe is not surprising in the framework of the standard cosmological model. On the other hand, clusters of the masses we’re talking about – about 1,000,000,000,000,000 times the mass of the Sun – should form pretty late in cosmic history so have the potential to challenge the standard theory.
In the paper we approach the issue in a different manner to other analyses and apply Extreme Value Statistics to ask how massive we would expect the largest cluster in the observable universe should be as a function of redshift. If we see one larger than the limits imposed by this calculation then we really need to consider modifying the standard theory. This way of tackling the problem attempts to finesse a  number of biases  in the usual approach, which is to attempt to estimate the number-density n(M) of clusters as a function of mass M, because it does not require a correction for a posteori  selection effects; it is not obvious, for example, prevcisely what volume is being probed by the surveys yielding these cluster candidates.

Anyway, the results are summarised in our Figure 1, which shows some estimated cluster masses, together with their uncertainties, superimposed on the theoretical distribution of the mass of the most massive cluster at that redshift:

If you’re wondering why the curves turn down at very low redshift, it’s just because the volume available to be observed at low redshift is small: although objects are generally more massive at low redshift, the chance of getting a really big one is reduced by the fact that one is observing a much smaller part of space-time.

The results show:  (a) that, contrary to some claims, the current observations are actually entirely consistent with the standard concordance model; but also  (b)  that the existence of clusters at redshifts around 1.5 with masses much bigger than 10^{15} M_{\odot} would require the tabling of an amendment to the standard theory.

Of course this is is a very conservative approach and it yields what is essentially a null result, but I take the view that while theorists should be prepared to consider radical new theoretical ideas, we should also be conservative when it comes to the interpretation of data.