Archive for Cosmology

Beyond Falsifiability: Normal Science in a Multiverse

Posted in The Universe and Stuff with tags , , , , , , on January 17, 2018 by telescoper

There’s a new paper on the arXiv by Sean Carroll called Beyond Falsifiability: Normal Science in a Multiverse. The abstract is:

Cosmological models that invoke a multiverse – a collection of unobservable regions of space where conditions are very different from the region around us – are controversial, on the grounds that unobservable phenomena shouldn’t play a crucial role in legitimate scientific theories. I argue that the way we evaluate multiverse models is precisely the same as the way we evaluate any other models, on the basis of abduction, Bayesian inference, and empirical success. There is no scientifically respectable way to do cosmology without taking into account different possibilities for what the universe might be like outside our horizon. Multiverse theories are utterly conventionally scientific, even if evaluating them can be difficult in practice.

I’ve added a link to `abduction’ lest you think it has something to do with aliens!

I haven’t had time to read all of it yet, but thought I’d share it here because it concerns a topic that surfaces on this blog from time to time. I’m not a fan the multiverse because (in my opinion) most of the arguments trotted out in its favour are based on very muddled thinking. On the other hand, I’ve never taken seriously any of the numerous critiques of the multiverse idea based on the Popperian criterion of falsifiability because (again, in my opinion) that falsifiability has very little to do with the way science operates.

Anyway, Sean’s papers are always interesting to read so do have a look if this topic interests you. And feel free to comment through the box below.


Crunch time for Dark Matter?

Posted in The Universe and Stuff with tags , , on January 9, 2018 by telescoper

Gratuitous picture of the cluster Abel 2218, showing numerous gravitational lensing arcs

I was reading through an article by Philip Ball in the Grauniad this morning about likely breakthroughs in science for the forthcoming year. One of the topics discussed therein was dark matter. Here’s an excerpt:

It’s been agreed for decades that the universe must contain large amounts of so-called dark matter – about five times as much as all the matter visible as stars, galaxies and dust. This dark matter appears to exert a gravitational tug while not interacting significantly with ordinary matter or light in other ways. But no one has any idea what it consists of. Experiments have been trying to detect it for years, but all have drawn a blank. The situation is becoming grave enough for some researchers to start taking more seriously suggestions that what looks like dark matter is in fact a consequence of something else – such as a new force that modifies the apparent effects of gravity. This year could prove to be crunch time for dark matter: how long do we persist in believing in something when there’s no direct evidence for it?

It’s a good question, though I have to say that there’s very little direct evidence for anything in cosmology: it’s mostly circumstantial, i.e. evidence that relies on an inference to connect it to a conclusion of fact…

Anyway, I thought it would be fun to do a totally unscientific poll of the sort that scientists find  fun to do, so here’s one. It’s actually quite hard to make this the topic of a simple question, because we know that there is ordinary (baryonic) matter that we can’t see, and there is known to be some non-baryonic dark matter in the form of a cosmic neutrino background. What the question below should be interpreted to mean, therefore, is  `is there a dominant component of non-baryonic dark matter in the Universe in the form of some as-yet undiscovered particle?’ or something like that.

For the record, I do think there is dark matter but less convinced that it is simple cold dark matter. On the other hand, I regard its existence as a working hypothesis rather than an article of faith and do not lose any sleep about the possibility of that hypothesis turning out to be wrong!


The Expanding Universe: An Introduction

Posted in The Universe and Stuff with tags , , on January 5, 2018 by telescoper

For those of you reading this blog who feel they need an up-to-date primer for the basics of modern cosmology without too much technical detail, I found a paper on the arXiv that might give you what you want. It’s over a hundred pages long but does not use much complicated mathematics but has some nice illustrations. The author is Markus Pössel; the abstract reads

An introduction to the physics and mathematics of the expanding universe, using no more than high-school level / undergraduate mathematics. Covered are the basics of scale factor expansion, the dynamics of the expanding universe, various distance concepts and the generalized redshift-luminosity relation, among other topics.

This paper focusses on the basics of the standard framework founded on general relativity, especially how cosmological distances are defined and measured, rather than on trendy modern topics like dark energy and the cosmic microwave background. I’d say any first-year physics student should be able to cope with it, but it’s not for someone who hasn’t learned calculus. On the other hand, it’s free to download so you don’t have much to lose by having a look!

You can download a PDF here.

A Python Toolkit for Cosmology

Posted in The Universe and Stuff with tags , , , , on December 14, 2017 by telescoper

The programming language Python has established itself as the industry standard for researchers in physics and astronomy (as well as the many other fields, including most of those covered by the Data Innovation Research Institute which employs me part-time). It has also become the standard vehicle for teaching coding skills to undergraduates in many disciplines. In fact it looks like the first module I will be teaching in Maynooth next term is in Computational Physics, and that will be delivered using Python too. It’s been a while since I last did any significant hands-on programming, so this will provide me with a good refresher. The best way to learn something well is to have to teach it to others!

But I digress. This morning I noticed a paper by Benedikt Diemer on the arXiv with the title COLOSSUS: A python toolkit for cosmology, large-scale structure, and dark matter halos. Here is the abstract:

This paper introduces Colossus, a public, open-source python package for calculations related to cosmology, the large-scale structure of matter in the universe, and the properties of dark matter halos. The code is designed to be fast and easy to use, with a coherent, well-documented user interface. The cosmology module implements FLRW cosmologies including curvature, relativistic species, and different dark energy equations of state, and provides fast computations of the linear matter power spectrum, variance, and correlation function. The large-scale structure module is concerned with the properties of peaks in Gaussian random fields and halos in a statistical sense, including their peak height, peak curvature, halo bias, and mass function. The halo module deals with spherical overdensity radii and masses, density profiles, concentration, and the splashback radius. To facilitate the rapid exploration of these quantities, Colossus implements about 40 different fitting functions from the literature. I discuss the core routines in detail, with a particular emphasis on their accuracy. Colossus is available at

The software can be downloaded here. It looks a very useful package that includes code to calculate many of the bits and pieces used by cosmologists working on the theory of large-scale structure and galaxy evolution. It is also, I hope, an example of a trend towards greater use of open-source software, for which I congratulate the author! I think this is an important part of the campaign to create truly open science, as I blogged about here.

An important aspect of the way science works is that when a given individual or group publishes a result, it should be possible for others to reproduce it (or not, as the case may be). At present, this can’t always be done. In my own field of astrophysics/cosmology, for example, results in traditional scientific papers are often based on very complicated analyses of large data sets. This is increasingly the case in other fields too. A basic problem obviously arises when data are not made public. Fortunately in astrophysics these days researchers are pretty good at sharing their data, although this hasn’t always been the case.

However, even allowing open access to data doesn’t always solve the reproducibility problem. Often extensive numerical codes are needed to process the measurements and extract meaningful output. Without access to these pipeline codes it is impossible for a third party to check the path from input to output without writing their own version assuming that there is sufficient information to do that in the first place. That researchers should publish their software as well as their results is quite a controversial suggestion, but I think it’s the best practice for science. There isn’t a uniform policy in astrophysics and cosmology, but I sense that quite a few people out there agree with me. Cosmological numerical simulations, for example, can be performed by anyone with a sufficiently big computer using GADGET the source codes of which are freely available. Likewise, for CMB analysis, there is the excellent CAMB code, which can be downloaded at will; this is in a long tradition of openly available numerical codes, including CMBFAST and HealPix.

I suspect some researchers might be reluctant to share the codes they have written because they feel they won’t get sufficient credit for work done using them. I don’t think this is true, as researchers are generally very appreciative of such openness and publications describing the corresponding codes are generously cited. In any case I don’t think it’s appropriate to withhold such programs from the wider community, which prevents them being either scrutinized or extended as well as being used to further scientific research. In other words excessively proprietorial attitudes to data analysis software are detrimental to the spirit of open science.

Anyway, my views aren’t guaranteed to be representative of the community, so I’d like to ask for a quick show of hands via a poll…

…and you are of course welcome to comment via the usual box.

WMAP wins the 2018 Breakthrough Prize for Fundamental Physics

Posted in The Universe and Stuff with tags , , , , on December 4, 2017 by telescoper

It’s very nice on a gloomy Monday morning to be able to share some exciting news and to congratulate so many friends and colleagues, for last night the 2018 Breakthrough Prize for Fundamental Physics was awarded to the team who worked on the Wilkinson Microwave Anisotropy Probe (WMAP). The citation reads:

For detailed maps of the early universe that greatly improved our knowledge of the evolution of the cosmos and the fluctuations that seeded the formation of galaxies.

The award, which is for the sizeable sum of $3 Million, will be shared among the 27 members of the WMAP team whose names I list here in full (team leaders are in italics):

Chris Barnes; Rachel Bean; Charles Bennett; Olivier Doré; Joanna Dunkley,;Benjamin M. Gold; Michael Greason; Mark Halpern; Robert Hill, Gary F. Hinshaw, Norman Jarosik, Alan Kogut, Eiichiro Komatsu, David Larson, Michele Limon, Stephan S. Meyer, Michael R. Nolta, Nils Odegard, Lyman Page, Hiranya V. Peiris, Kendrick Smith, David N. Spergel, Greg S. Tucker, Licia Verde, Janet L. Weiland, Edward Wollack, and Edward L. (Ned) Wright.

I know quite a few of these people personally, including Hiranya, Licia, Eiichiro, Joanna, Olivier and Ned, so it’s a special pleasure to congratulate them – and the other members of the team – on this well-deserved award.

Don’t spend all the money in the same shop!


One Hundred Years of the Cosmological Constant: from ‘Superfluous Stunt’ to Dark Energy

Posted in History, The Universe and Stuff with tags , , , on November 21, 2017 by telescoper

Some months ago I did a little post on the occasion of the 100th anniversary of the introduction of the cosmological constant which included a link to the original paper on this subject by Albert Einstein. A nice thread of well-informed comments followed that post and one of the contributors to that thread, Cormac O’Raifeartaigh, is lead author of a paper that has just appeared on the arXiv. It’s quite a lengthy paper (62 pages) that gives an account of the cosmological constant in the context of modern observational cosmology. You can get a PDF of the paper here. It’s well worth reading!

The abstract reads:

We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of cosmic the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs: (i) the use of the term in static cosmologies (both Newtonian and relativistic; (ii) the marginalization of the term following the discovery of cosmic expansion; (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars; (iv) the re-emergence of the term in today’s Lamda-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was sidelined by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN 1a supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.

Merging Galaxies in the Early Universe

Posted in The Universe and Stuff with tags , , , , on November 14, 2017 by telescoper

I just saw this little movie circulated by the European Space Agency.

The  source displayed in the video was first identified by European Space Agency’s now-defunct Herschel Space Observatory, and later imaged with much higher resolution using the ground-based Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. It’s a significant discovery because it shows two large galaxies at quite high redshift (z=5.655) undergoing a major merger. According to the standard cosmological model this event occurred about a billion years after the Big Bang. The first galaxies are thought to have formed after a few hundred million years, but these objects are expected to have been be much smaller than present-day galaxies like the Milky Way. Major mergers of the type seen apparently seen here are needed if structures are to grow sufficiently rapidly, through hierarchical clustering, to produce what we see around us now, about 13.7 Gyrs after the Big Bang.

The ESA press release can be found here and for more expert readers the refereed paper (by Riechers et al.) can be found here (if you have a subscription to the Astrophysical Journal or for free on the arXiv here.

The abstract (which contains a lot of technical detail about the infra-red/millimetre/submillimetre observations involved in the study) reads:

We report the detection of ADFS-27, a dusty, starbursting major merger at a redshift of z=5.655, using the Atacama Large Millimeter/submillimeter Array (ALMA). ADFS-27 was selected from Herschel/SPIRE and APEX/LABOCA data as an extremely red “870 micron riser” (i.e., S_250<S_350<S_500<S_870), demonstrating the utility of this technique to identify some of the highest-redshift dusty galaxies. A scan of the 3mm atmospheric window with ALMA yields detections of CO(5-4) and CO(6-5) emission, and a tentative detection of H2O(211-202) emission, which provides an unambiguous redshift measurement. The strength of the CO lines implies a large molecular gas reservoir with a mass of M_gas=2.5×10^11(alpha_CO/0.8)(0.39/r_51) Msun, sufficient to maintain its ~2400 Msun/yr starburst for at least ~100 Myr. The 870 micron dust continuum emission is resolved into two components, 1.8 and 2.1 kpc in diameter, separated by 9.0 kpc, with comparable dust luminosities, suggesting an ongoing major merger. The infrared luminosity of L_IR~=2.4×10^13Lsun implies that this system represents a binary hyper-luminous infrared galaxy, the most distant of its kind presently known. This also implies star formation rate surface densities of Sigma_SFR=730 and 750Msun/yr/kpc2, consistent with a binary “maximum starburst”. The discovery of this rare system is consistent with a significantly higher space density than previously thought for the most luminous dusty starbursts within the first billion years of cosmic time, easing tensions regarding the space densities of z~6 quasars and massive quiescent galaxies at z>~3.

The word `riser’ refers to the fact that the measured flux increases with wavelength from the range of wavelengths measured by Herschel/Spire (250 to 500 microns) and up 870 microns. The follow-up observations with higher spectral resolution are based on identifications of carbon monoxide (CO) and water (H20) in the the spectra, which imply the existence of large quantities of gas capable of fuelling an extended period of star formation.

Clearly a lot was going on in this system, a long time ago and a long way away!