Archive for Cosmology

When was the Epoch of Galaxy Formation?

Posted in Biographical, The Universe and Stuff with tags , , , on July 31, 2021 by telescoper

As a cosmologist I am often asked when was the Epoch of Galaxy Formation?

Here I provide the definitive answer: the meeting entitled The Epoch of Galaxy Formation took place in Durham between July 18th and 22nd 1988, i.e. about 33 years ago. Here is a relic of that period.

I am in there with John Barrow to my left (ie your right) . I can also identify Jim Peebles, Simon White, Richard Ellis, George Efstathiou and Carlos Frenk, Martin Rees and Tom Shanks among others but I wonder how many others you can identify…

P.S. Note the male-female asymmetry in cosmology was much greater in this period during the early Universe.

UPDATE: here is the solution to the problem.

Searching for the Predicted Peaks in the CMB Power Spectrum

Posted in The Universe and Stuff with tags , , on July 11, 2021 by telescoper

I came across this on social media and thought I’d share it here. It’s a nice graphical demonstration of the interplay between theory and experiment in the field of cosmic microwave background physics. The video was created by Forrest Fankhauser and Lloyd Knox at the University of California, Davis with funding from the National Science Foundation.

As someone famous once said: “we’ve come a long way from pigeon shit…”

New Publication at the Open Journal of Astrophysics

Posted in The Universe and Stuff, Open Access with tags , , , , , on July 7, 2021 by telescoper

Time to announce another publication in the Open Journal of Astrophysics. This one was actually published last Friday, but I didn’t get time to post about it until just now. It is the fifth paper in Volume 4 (2021) and the 36th paper in all.

The latest publication is entitled Gravitational Wave Direct Detection does not Constrain the Tensor Spectral Index at CMB Scales and the author is Will Kinney of the State University of New York at Buffalo (which is SUNY Buffalo, for short).

Here is a screen grab of the overlay which includes the abstract:

You can click on the image to make it larger should you wish to do so. You can find the arXiv version of the paper here. This one is, fairly obviously, in the Cosmology and Nongalactic Astrophysics folder..

Over the last few months I have noticed that it has taken a bit longer to get referee reports on papers and also for authors to complete their revisions. I think that’s probably a consequence of the pandemic and people being generally overworked. We do have a number of papers at various stages of the pipeline, so although we’re a bit behind where we were last year in terms of papers published I think may well catch up in the next month or two.

I’ll end with a reminder to prospective authors that the OJA  now has the facility to include supplementary files (e.g. code or data sets) along with the papers we publish. If any existing authors (i.e. of papers we have already published) would like us to add supplementary files retrospectively then please contact us with a request!

Catching up on Cosmic Dawn

Posted in The Universe and Stuff with tags , , , , , on June 25, 2021 by telescoper

Trying to catch up on cosmological news after a busy week I came across a number of pieces in the media about “Cosmic Dawn” (e.g. here in The Grauniad). I’ve never actually met Cosmic Dawn but she seems like an interesting lady.

But seriously folks, Cosmic Dawn refers to the epoch during which the first stars formed in the expanding Universe lighting up the Universe after a few hundred million years of post-recombination darkness.

According to the Guardian article mentioned above the new results being discussed are published in Monthly Notices of the Royal Astronomical Society but they’re actually not. Yet. Nevertheless the paper (by Laporte et al.) is available on the arXiv which is where people will actually read it…

Anyway, here is the abstract:

Here is a composite of HST and ALMA images for one of the objects discussed in the paper (MACS0416-JD):

I know it looks a bit blobby but it’s not easy to resolve things at such huge distances! Also, it’s quite small because it’s far away. In any case the spectroscopy is really the important thing, not the images, as that is what determines the redshift. The Universe has expanded by a factor 10 since light set out towards us from an object at redshift 9. I’m old enough to remember when “high redshift” meant z~0.1!

At the end of my talk on Wednesday Floyd Stecker asked me about what the James Webb Space Telescope (due for launch later this year) would do for cosmology and I replied that it would probably do a lot more for galaxy formation and evolution than cosmology per se. I think this is a good illustration of what I meant. Because of its infrared capability JWST will allow astronomers to push back even further and learn even more about how the first stars formed, but it won’t tell us much directly about dark matter and dark energy.

Challenges for the Standard Cosmological Model

Posted in The Universe and Stuff with tags , , , on June 14, 2021 by telescoper

I recently came across a comprehensive review article on the arXiv and thought some of my regular readers might find it interesting as a description of the current state of play in cosmology. The paper is called Challenges for ΛCDM: An update and is written by Leandros Perivolaropoulos and Foteini Skara.

Here is the abstract:

A number of challenges of the standard ΛCDM model has been emerging during the past few years as the accuracy of cosmological observations improves. In this review we discuss in a unified manner many existing signals in cosmological and astrophysical data that appear to be in some tension (2σ or larger) with the standard ΛCDM model as defined by the Planck18 parameter values. In addition to the major well studied 5σ challenge of ΛCDM (the Hubble H0 crisis) and other well known tensions (the growth tension and the lensing amplitude AL anomaly), we discuss a wide range of other less discussed less-standard signals which appear at a lower statistical significance level than the H0 tension (also known as ‘curiosities’ in the data) which may also constitute hints towards new physics. For example such signals include cosmic dipoles (the fine structure constant α, velocity and quasar dipoles), CMB asymmetries, BAO Lyα tension, age of the Universe issues, the Lithium problem, small scale curiosities like the core-cusp and missing satellite problems, quasars Hubble diagram, oscillating short range gravity signals etc. The goal of this pedagogical review is to collectively present the current status of these signals and their level of significance, with emphasis to the Hubble crisis and refer to recent resources where more details can be found for each signal. We also briefly discuss possible theoretical approaches that can potentially explain the non-standard nature of some of these signals.

Among the useful things in it you will find this summary of the current ‘tension’ over the Hubble constant that I’ve posted about numerous times (e.g. here):

More from the Dark Energy Survey

Posted in Astrohype, The Universe and Stuff with tags , , , , , , on May 28, 2021 by telescoper

To much media interest the Dark Energy Survey team yesterday released 11 new papers based on the analysis of their 3-year data. You can find the papers together with short descriptions here. There’s even a little video about the Dark Energy Survey here:

The official press release summarizes the results as follows:

Scientists measured that the way matter is distributed throughout the universe is consistent with predictions in the standard cosmological model, the best current model of the universe.

This contrasts a bit with the BBC’s version:

The results are a surprise because they show that it is slightly smoother and more spread out than the current best theories predict.

The observation appears to stray from Einstein’s theory of general relativity – posing a conundrum for researchers.

The reason for this appears to be that the BBC story focusses on the weak lensing paper (found here; I’ll add a link to the arXiv version if and when it appears there). The abstract is here:

The parameter S8 is a (slightly) rescaled version of the more familiar parameter σ8  – which quantifies the matter-density fluctuations on a scale of 8 h-1 Mpc – as defined in the abstract; cosmic shear is particularly sensitive to this parameter.

The key figure showing the alleged “tension” with Planck is here:

The companion paper referred to in the above abstract (found here has an abstract that concludes with the words (my emphasis).

We find a 2.3σ difference between our S8 result and that of Planck (2018), indicating no statistically significant tension, and additionally find our results to be in qualitative agreement with current weak lensing surveys (KiDS-1000 and HSC).

So, although certain people have decided to hype up a statistically insignificant l discrepancy, everything basically fits the standard model…

Cosmology Talks: Volker Springel on GADGET-4

Posted in The Universe and Stuff with tags , , , , , , , on May 18, 2021 by telescoper

It’s time I shared another one of those interesting cosmology talks on the Youtube channel curated by Shaun Hotchkiss. This channel features technical talks rather than popular expositions so it won’t be everyone’s cup of tea but for those seriously interested in cosmology at a research level they should prove interesting.

In this talk from a couple of months ago  Volker Springel discusses Gadget-4 which is a parallel computational code that combines cosmological N-body and SPH code and is intended for simulations of cosmic structure formation and calculations relevant for galaxy evolution and galactic dynamics.

The predecessor of GADGET-2 is probably the most used computational code in cosmology; this talk discusses what new ideas are implemented in GADGET-4 to improve on the earlier version and what new features it has.  Volker also explains what happened to GADGET-3!

The paper describing Gadget-4 can be found here.

 

Cosmology and the Born-Again Bayesians!

Posted in Bad Statistics, Biographical, The Universe and Stuff with tags , , , , on May 10, 2021 by telescoper

The other day, via Twitter, I came across an interesting blog post about the relatively recent resurgence of Bayesian reasoning in science. That piece had triggered a discussion about why cosmologists seem to be largely Bayesian in outlook, so I thought I’d share a few thoughts about that. You can find a lot of posts about various aspects of Bayesian reasoning on this blog, e.g. here.

When I was an undergraduate student I didn’t think very much about statistics at all, so when I started my DPhil studies I realized I had a great deal to learn. However, at least to start with, I mainly used frequentist methods. Looking back I think that’s probably because I was working on cosmic microwave background statistics and we didn’t really have any data back in 1985. Or actually we had data, but no firm detections. I was therefore taking models and calculating things in what I would call the forward direction, indicated by the up arrow. What I was trying to do was find statistical descriptors that looked likely to be able to discriminate between different models but I didn’t have the data.

Once measurements started to become available the inverse-reasoning part of the diagram indicated by the downward arrow came to the fore. It was only then that it started to become necessary to make firm statements about which models were favoured by the data and which weren’t. That is what Bayesian methods do best, especially when you have to combine different data sets.

By the early 1990s I was pretty much a confirmed Bayesian – as were quite a few fellow theorists -but I noticed that most observational cosmologists I knew were confirmed frequentists. I put that down to the fact that they preferred to think in “measurement space” rather than “theory space”, the latter requiring the inductive step furnished by Bayesian reasoning indicated by the downward arrow. As cosmology has evolved the separation between theorists and observers in some areas – especially CMB studies – has all but vanished and there’s a huge activity at the interface between theory and measurement.

But my first exposure to Bayesian reasoning came long before that change. I wasn’t aware of its usefulness until 1987, when I returned to Cambridge for a conference called The Post-Recombination Universe organized by Nick Kaiser and Anthony Lasenby. There was an interesting discussion in one session about how to properly state the upper limit on CMB fluctuations arising from a particular experiment, which had been given incorrectly in a paper using a frequentist argument. During the discussion, Nick described Anthony as a “Born-again Bayesian”, a phrase that stuck in my memory though I’m still not sure whether or not it was meant as an insult.

It may be the case for many people that a relatively simple example convinces them of the superiority of a particular method or approach. I had previously found statistical methods – especially frequentist hypothesis-testing – muddled and confusing, but once I’d figured out what Bayesian reasoning was I found it logically compelling. It’s not always easy to do a Bayesian analysis for reasons discussed in the paper to which I linked above, but it least you have a clear idea in your mind what question it is that you are trying to answer!

Anyway, it was only later that I became aware that there were many researchers who had been at Cambridge while I was there as a student who knew all about Bayesian methods: people such as Steve Gull, John Skilling, Mike Hobson, Anthony Lasenby and, of course, one Anthony Garrett. It was only later in my career that I actually got to talk to any of them about any of it!

So I think the resurgence of Bayesian ideas in cosmology owes a very great deal to the Cambridge group which had the expertise necessary to exploit the wave of high quality data that started to come in during the 1990s and the availability of the computing resources needed to handle it.

But looking a bit further back I think there’s an important Cambridge (but not cosmological) figure that preceded them, Sir Harold Jeffreys whose book The Theory of Probability was first published in 1939. I think that book began to turn the tide, and it still makes for interesting reading.

P.S. I have to say I’ve come across more than one scientist who has argued that you can’t apply statistical reasoning in cosmology because there is only one Universe and you can’t use probability theory for unique events. That erroneous point of view has led to many otherwise sensible people embracing the idea of a multiverse, but that’s the subject for another rant.

Testing Cosmological Reciprocity

Posted in The Universe and Stuff with tags , , on April 13, 2021 by telescoper

I have posted a few times about Etherington’s Reciprocity Theorem in cosmology, largely in connection with the Hubble constant tension – see, e.g., here.

The point is that if the Universe is described by a space-time with the Robertson-Walker Metric (which is the case if the Cosmological Principle applies in the framework of General Relativity) then angular diameter distances and luminosity distances can differ only by a factor of (1+z)2 where z is the redshift: DL=DA(1+z)2.

I’ve included here some slides from undergraduate course notes to add more detail to this if you’re interested:

The result DL=DA(1+z)2 is an example of Etherington’s Reciprocity Theorem and it does not depend on a particular energy-momentum tensor; the redshift of a source just depends on the scale factor when light is emitted and the scale factor when it is received, not how it evolves in between.

Etherington’s theorem requires light rays to be described by null geodesics which would not be the case if photons had mass, so introducing massive photons would violate the theorem. It also requires photon numbers to be conserved, so some mysterious way of making photons disappear might do the trick, so adding some exotic field that interacts with light in a peculiar way is another possibility, as is the possibility of having a space-time with torsion, i.e. a non-Riemannian space-time.

Another possibility you might think of is to abandon the Robertson-Walker metric. We know that the Universe is not exactly homogeneous and isotropic, so one could appeal to the gravitational lensing effect of lumpiness to provide a departure from the simple relationship given above. In fact a inhomogeneous cosmological model based on GR does not in itself violate Etherington’s theorem, but it means that the relation DL=DA(1+z)2 is no longer global. In such models there is no way of defining a global scale factor a(t) so the reciprocity relation applies only locally, in a different form for each source and observer. In order to test this idea one would have to have luminosity distances and angular diameter distances for each source. The most distant objects for which we have luminosity distance measures are supernovae, and we don’t usually have angular-diameter distances for them.

Anyway, these thoughts popped back into my head when I saw a new paper on the arXiv by Holanda et al, the abstract of which is here:

Here we have an example of a set of sources (galaxy clusters) for which we can estimate both luminosity and angular-diameter distances (the latter using gravitational lensing) and thus test the reciprocity relation (called the cosmic distance duality relation in the paper). The statistics aren’t great but the result is consistent with the standard theory, as are previous studies mentioned in the paper. So there’s no need yet to turn the Hubble tension into torsion!

Cosmology Talks: Dan Thomas on the first model-independent cosmological simulations of modified gravity

Posted in The Universe and Stuff with tags , , , , , , , on April 7, 2021 by telescoper

It’s time I shared another one of those interesting cosmology talks on the Youtube channel curated by Shaun Hotchkiss. This channel features technical talks rather than popular expositions so it won’t be everyone’s cup of tea but for those seriously interested in cosmology at a research level they should prove interesting. This one was published just yesterday.

In the talk Dan Thomas discusses his  recent work first creating a framework for describing modified gravity (i.e. extensions of general relativity) in a model-independent way on non-linear scales and then running N-body simulations in that framework. The framework involves finding a correspondence between large scale linear theory where everything is under control and small scale non-linear post-Newtonian dynamics. After a lot of care and rigour it boils down to a modified Poisson equation – on both large and small scales (in a particular gauge). The full generality of the modification to the Poisson equation allows, essentially, for a time and space dependent value for Newton’s constant. For most modified gravity models, the first level of deviation from general relativity can be parametrised in this way. This approach allows the method to use to  constrain modified gravity using observations without needing to run a new simulation for every step of a Monte Carlo parameter fit.

P. S. A couple of papers to go with this talk can be found here and here.