Archive for Diversity

Physics in a diverse world…

Posted in Biographical, LGBT, Maynooth with tags , , , , on March 25, 2022 by telescoper

Regular observers of the arXiv will have noticed a recent deluge avalanche of papers from the recent Snowmass Community Planning Exercise. There are many excellent reports although they came out all in a flurry which has made it difficult to keep on top of them.

An example that I missed was one that appeared in the Physics Education section of arXiv that arose from a talk by theoretical physicist Howard Georgi given at the KITP Conference: Snowmass Theory Frontier on Feb. 23, 2022. The paper, entitled Physics in a diverse world or A Spherical Cow* Model of Physics Talent, doesn’t have an abstract but is quite short and is well worth reading. You can download it here.

Here is a short extract with which I agree fully the philosophy of which I have tried very hard to follow ever since I got my first Professorship in 1998 (though not always with the cooperation of all colleagues, and sometimes, in the past, against the opposition of a few):

If your career is established and you are not making an explicit and continual effort to encourage, mentor, and support all young physicists, to create a welcoming climate in your department, and to promote the hiring of diverse faculty members, you are part of the problem.

I’m hoping next week to be able to pass on some exciting news in this regard about Maynooth University.

I wrote some of my own thoughts from the point of view of LGBT+ diversity here but much of what I said in that context is of wider relevance.

But that brings us to the question of why we should care about whether LGBT students might be deterred from becoming scientists. This is much the same issue as to why we should worry that there are so few female physics students. The obvious answer is based on notions of fairness: we should do everything we can to ensure that people have equal opportunity to advance their career in whatever direction appeals to them. But I’m painfully aware that there are some people for whom arguments based on fairness simply don’t wash. For them there’s another argument that may work better. As scientists whose goal is – or should be – the advancement of knowledge, the message is that we should strive as hard as possible to recruit the brightest and most creative brains into our subject. That means ensuring that the pool from which we recruit is as large and as diverse as possible. The best student drawn from such a pool is likely to be better than the best student from a smaller and more restricted one.

Big companies haven’t become gay-friendly employers in recent years out of a sudden urge for altruism. They’ve done it because they know that they’d otherwise be discouraging many excellent potential employees from joining them. It’s exactly the same for research

*This is an allusion to the old joke for the tendency of scientists – especially theoretical physicists – to adopt highly simplified models of complex phenomena.

Breakthrough Prize for Dame Jocelyn Bell Burnell

Posted in The Universe and Stuff with tags , , , , , on September 6, 2018 by telescoper

I awoke this morning to find my Twitter feed full of news about the award of a special Breakthrough Prize to Dame Jocelyn Bell Burnell. To quote the press release:

The Selection Committee of the Breakthrough Prize in Fundamental Physics today announced a Special Breakthrough Prize in Fundamental Physics recognizing the British astrophysicist Jocelyn Bell Burnell for her discovery of pulsars – a detection first announced in February 1968 – and her inspiring scientific leadership over the last five decades.

Bell Burnell receives the Prize “for fundamental contributions to the discovery of pulsars, and a lifetime of inspiring leadership in the scientific community.” Pulsars are a highly magnetized, rapidly spinning form of the super-dense stars known as neutron stars. Their discovery was one of the biggest surprises in the history of astronomy, transforming neutron stars from science fiction to reality in a most dramatic way. Among many later consequences, it led to several powerful tests of Einstein’s Theory of Relativity, and to a new understanding of the origin of the heavy elements in the universe.

For the full citation and background information, see here.

The prize is not only prestigious but also substantial in cash terms: $3M no less. Jocelyn has made it clear however that she intends to use the money to set up a fund to encourage greater diversity in physics, through the Institute of Physics. That is a wonderful gesture, but if you know Jocelyn at all then you will not be at all surprised by it, as she is a person of enormous integrity who has for many years demonstrated a huge commitment to the cause of increasing diversity. I look forward to hearing more about how this initiative works out.

In an interview with the Guardian, Jocelyn said “Increasing the diversity in physics could lead to all sorts of good things.” I agree, and not just because an open and inclusive environment is a good thing in itself (which it is) but also because the fewer barriers there are to entry for a particular field, the broader the pool of talent from which it can recruit.

P.S. What would you do if you won a prize of $3M?

P. P. S. If I had $3M to spend, I think I’d spend it on whatever would most annoy all the miserable twerps complaining on Twitter about what Jocelyn Bell Burnell is doing with her Breakthrough Prize money.

(Lack of) Diversity in STEM Subjects

Posted in Science Politics with tags , , , , , , on May 10, 2013 by telescoper

Among the things I learnt over the last few days was some interesting information about the diversity (or, rather, lack of diversity) of undergraduates taking undergraduate degrees in STEM subjects in the UK universities. For those of you not up on the lingo, `STEM’ is short for Science, Technology, Engineering and Mathematics. Last year the Institute of Physics produced a report that contains a wealth of statistical information about the demographics of the undergraduate population, from which the following numbers are only a small component.

























For completeness I should point out that these numbers refer to first-year undergraduates in 2010-11; I have no particular reason to suppose there has been a qualitative change since then. “BME” stands for “Black and Minority Ethnic”, and “Socio-Economic” refers to students whose with parents not employed in managerial or professional positions.

Overall, the figures here at the University of Sussex are roughly in line with, but slightly better than, these national statistics; the proportion of female students in our Physics intake for 2010/11, for example, was 27%.

There are some interesting (and rather disappointing) things to remark. First is that the proportion of Physics students who are female remains low; Physics scores very badly on ethnic diversity too. Mathematics on the other hand seems a much more attractive subject for female students.  Notice also how Physics and Chemistry attract a very small proportion of overseas students compared to Engineering.

In summary, therefore, we can see that Physics is a subject largely studied by white  middle-class European males. What are we doing wrong?

Despite considerable efforts to promote Physics to a more diverse constituency,  the proportion of, e.g., female physics students seems to have been bumping along at around 20% for ages.  Interestingly, all the anecdotal evidence suggests that those women who do Physics at University do disproportionately well, in the sense that female students constitute a  much larger fraction of First-class graduates than 20%. This strongly suggests that the problem lies at school level; some additional IOP information and discussion on this can be found here.

I’m just passing these figures on for information, as I’m quite often asked about them during, e.g., admissions-related activities. I don’t have any really compelling suggestions, but I would like to invite the blogosphere to comment and/or make suggestions as to promote diversity in STEM disciplines.