Archive for Edwin Hubble

Hubble versus Slipher

Posted in History, The Universe and Stuff with tags , , , , , on September 15, 2012 by telescoper

Since I’m here at a conference celebrating the scientific achievements of Vesto M. Slipher, I thought I’d take the opportunity to make a few remarks about Slipher’s work and legacy.

I often use this picture in popular talks to illustrate the correlation between distance (x-axis) and apparent recession velocity (y-axis) that has become universally known as Hubble’s Law. This is an early version of such a plot published by Edwin Hubble in 1929.

In public talks I rarely have time to go into the details of this, but it is worth saying that only the results on the x-axis were Hubble’s own measurements. Hubble only contributed half of the above plot, i.e. the distance measurements, and these turned out to be wrong by a factor of about 10 owing to an incorrect identification of the stars used as standard candles. All the recession velocities on the y-axis – obtained by looking at the displacement of lines in the target galaxy’s spectrum – were in fact obtained by Vesto Slipher at the Lowell Observatory here in Flagstaff, Arizona. Hubble used these data from Slipher with permission, but gave no credit to Slipher in the references to his 1929 work. A later, and more convincing, version of this plot published in 1931 by Hubble and Humason, was accompanied by a generous acknowledgement to Slipher’s contribution. However, by then, Hubble’s name was firmly associated with the plot and Slipher’s contribution was largely forgotten for many years subsequently.

This episode isn’t at all atypical of Hubble’s behaviour. He was an extremely ambitious man who was an expert in the art of promoting himself and the Mount Wilson Observatory where he worked. Slipher was a very different type of man: quiet, self-effacing, and very much a team player, dedicated to scientific accuracy rather than his own reputation.

It’s worth saying further that the key observation that led to the understanding that the Universe is expanding is the fact that most of the spectra obtained by Slipher, over the years subsequent to his first measurement of the spectrum of the Andromeda Nebula (M31) celebrated by this conference, showed a redshift indicating velocity away from the observer. Even without distance measurements this leads directly an interpretation in terms of cosmic expansion. Ironically, the first spectrum he obtained, M31 shows a blue shift, as do a few others plotted with negative velocities in the above diagram, but the more distant sources exclusively show a redshift.

As a scientist should be, Slipher was very careful about the interpretation of this result. The more distant objects are fainter and thus more difficult to observe. Could it arise from some systematic artifact? Or could there be an unknown physical effect that produces a redshift dependent on the size of the source? These questions could only be answered when accurate distances to the nebulae were established, so Hubble’s contribution was by no means negligible. It’s completely untrue, however, to say that Hubble discovered the expansion of the Universe, so there’s yet another example of Stigler’s Law of Eponymy whenever anyone talks about the Hubble expansion.

One of the great things about coming to this meeting was the chance to meet Alan Slipher, grandson of Vesto Slipher. He and other members of his family refer to Vesto as “VM”, by the way, which I hadn’t realised before. VM lived a long life, dying in 1969 just short of his 94th birthday, so Alan knew him well until age 17 or so. He spoke most warmly and movingly after yesterday’s conference dinner about his memories of his grandfather, who he clearly looked up to. His words confirmed the impression I’d already formed, that Slipher was an extremely cautious and serious scientist as well as a kindly and humble man.

The contrasting personalities of Slipher and Hubble are further illustrated by correspondence between the two that is archived at the Lowell Observatory. Slipher comes across as kindly and cooperative, Hubble as pompous and self-regarding. I know which of the two I admire the best, both and scientist and human being.

A Potted Prehistory of Cosmology

Posted in History, The Universe and Stuff with tags , , , , , , , , , , , , , , , , , , , , , on January 26, 2012 by telescoper

A few years ago I was asked to provide a short description of the history of cosmology, from the dawn of civilisation up to the establishment of the Big Bang model, in less than 1200 words. This is what I came up with. Who and what have I left out that you would have included?

–0–

 Is the Universe infinite? What is it made of? Has it been around forever?  Will it all come to an end? Since prehistoric times, humans have sought to build some kind of conceptual framework for answering questions such as these. The first such theories were myths. But however naïve or meaningless they may seem to us now, these speculations demonstrate the importance that we as a species have always attached to thinking about life, the Universe and everything.

Cosmology began to emerge as a recognisable scientific discipline with the Greeks, notably Thales (625-547 BC) and Anaximander (610-540 BC). The word itself is derived from the Greek “cosmos”, meaning the world as an ordered system or whole. In Greek, the opposite of “cosmos” is “chaos”. The Pythagoreans of the 6th century BC regarded numbers and geometry as the basis of all natural things. The advent of mathematical reasoning, and the idea that one can learn about the physical world using logic and reason marked the beginning of the scientific era. Plato (427-348 BC) expounded a complete account of the creation of the Universe, in which a divine Demiurge creates, in the physical world, imperfect representations of the structures of pure being that exist only in the world of ideas. The physical world is subject to change, whereas the world of ideas is eternal and immutable. Aristotle (384-322 BC), a pupil of Plato, built on these ideas to present a picture of the world in which the distant stars and planets execute perfect circular motions, circles being a manifestation of “divine” geometry. Aristotle’s Universe is a sphere centred on the Earth. The part of this sphere that extends as far as the Moon is the domain of change, the imperfect reality of Plato, but beyond this the heavenly bodies execute their idealised circular motions. This view of the Universe was to dominate western European thought throughout the Middle Ages, but its perfect circular motions did not match the growing quantities of astronomical data being gathered by the Greeks from the astronomical archives made by the Babylonians and Egyptians. Although Aristotle had emphasised the possibility of learning about the Universe by observation as well as pure thought, it was not until Ptolemy’s Almagest, compiled in the 2nd Century AD, that a complete mathematical model for the Universe was assembled that agreed with all the data available.

Much of the knowledge acquired by the Greeks was lost to Christian culture during the dark ages, but it survived in the Islamic world. As a result, cosmological thinking during the Middle Ages of Europe was rather backward. Thomas Aquinas (1225-74) seized on Aristotle’s ideas, which were available in Latin translation at the time while the Almagest was not, to forge a synthesis of pagan cosmology with Christian theology which was to dominated Western thought until the 16th and 17th centuries.

The dismantling of the Aristotelian world view is usually credited to Nicolaus Copernicus (1473-1543).  Ptolemy’s Almagest  was a complete theory, but it involved applying a different mathematical formula for the motion of each planet and therefore did not really represent an overall unifying system. In a sense, it described the phenomena of heavenly motion but did not explain them. Copernicus wanted to derive a single universal theory that treated everything on the same footing. He achieved this only partially, but did succeed in displacing the Earth from the centre of the scheme of things. It was not until Johannes Kepler (1571-1630) that a completely successful demolition of the Aristotelian system was achieved. Driven by the need to explain the highly accurate observations of planetary motion made by Tycho Brahe (1546-1601), Kepler replaced Aristotle’s divine circular orbits with more mundane ellipses.

The next great development on the road to modern cosmological thinking was the arrival on the scene of Isaac Newton (1642-1727). Newton was able to show, in his monumental Principia (1687), that the elliptical motions devised by Kepler were the natural outcome of a universal law of gravitation. Newton therefore re-established a kind of Platonic level on reality, the idealised world of universal laws of motion. The Universe, in Newton’s picture, behaves as a giant machine, enacting the regular motions demanded by the divine Creator and both time and space are absolute manifestations of an internal and omnipresent God.

Newton’s ideas dominated scientific thinking until the beginning of the 20th century, but by the 19th century the cosmic machine had developed imperfections. The mechanistic world-view had emerged alongside the first stirrings of technology. During the subsequent Industrial Revolution scientists had become preoccupied with the theory of engines and heat. These laws of thermodynamics had shown that no engine could work perfectly forever without running down. In this time there arose a widespread belief in the “Heat Death of the Universe”, the idea that the cosmos as a whole would eventually fizzle out just as a bouncing ball gradually dissipates its energy and comes to rest.

Another spanner was thrown into the works of Newton’s cosmic engine by Heinrich Olbers (1758-1840), who formulated in 1826 a paradox that still bears his name, although it was discussed by many before him, including Kepler. Olbers’ Paradox emerges from considering why the night sky is dark. In an infinite and unchanging Universe, every line of sight from an observer should hit a star, in much the same way as a line of sight through an infinite forest will eventually hit a tree. The consequence of this is that the night sky should be as bright as a typical star. The observed darkness at night is sufficient to prove the Universe cannot both infinite and eternal.

Whether the Universe is infinite or not, the part of it accessible to rational explanation has steadily increased. For Aristotle, the Moon’s orbit (a mere 400,000 km) marked a fundamental barrier, to Copernicus and Kepler the limit was the edge of the Solar System (billions of kilometres away). In the 18th and 19th centuries, it was being suggested that the Milky Way (a structure now known to be at least a billion times larger than the Solar System) to be was the entire Universe. Now it is known, thanks largely to Edwin Hubble (1889-1953), that the Milky Way is only one among hundreds of billions of similar galaxies.

The modern era of cosmology began in the early years of the 20th century, with a complete re-write of the laws of Nature. Albert Einstein (1879-1955) introduced the principle of relativity in 1905 and thus demolished Newton’s conception of space and time. Later, his general theory of relativity, also supplanted Newton’s law of universal gravitation. The first great works on relativistic cosmology by Alexander Friedmann (1888-1925), George Lemaître (1894-1966) and Wilhem de Sitter (1872-1934) formulated a new and complex language for the mathematical description of the Universe.

But while these conceptual developments paved the way, the final steps towards the modern era were taken by observers, not theorists. In 1929, Edwin Hubble, who had only recently shown that the Universe contained many galaxies like the Milky way, published the observations that led to the realisation that our Universe is expanding. That left the field open for two rival theories, one (“The Steady State”, with no beginning and no end)  in which matter is continuously created to fill in the gaps caused by the cosmic expansion and the other in which the whole shebang was created, in one go, in a primordial fireball we now call the Big Bang.

Eventually, in 1965, Arno Penzias and Robert  Wilson discovered the cosmic microwave background radiation, proof (or as near to proof as you’re likely to see) that our Universe began in a  Big Bang…