Archive for Engineering

Out and G3 Awards – How about some scientists?

Posted in LGBT with tags , , , , , , on November 30, 2013 by telescoper

I’m taking it easy today so this will be a brief post to follow up on an old one in which I bemoaned the lack of (visible) Lesbian, Gay, Bisexual or Transgendered physicists. I was subsequently invited to speak at an event in London about this issue. I couldn’t make it because of other commitments, but I gather it went well. Anyway, in my earlier post I wrote

It has always annoyed me that the Independent newspaper’s annual “Pink List” of the UK’s most influential LGBT people never – and I mean never – has a single LGBT scientist on it, despite the immense amount they do not only in research, but also in teaching and outreach. It’s very sad that this work is largely unacknowledged and even sadder that a great many potential role models are hidden.

Actually this year’s Pink List did have one scientist on it, but my point remains relevant. It turns out that nominations are open for the Readers’ Awards of Out  and g3 magazines  to be voted on by the public in 2014. The prizes will awarded in April and expect to be reported in the gay media, they often lead on to more widespread publicity for the winners. So I thought I’d do my little bit to encourage folk out there to think about nominating a scientist or engineer for this prize.

You may nominate your favourite sportsperson, broadcaster, celebrity or  ‘straight ally’, but why not put forward the name of a Lesbian, Gay, Bisexual, Transgender person you know from the world of science, medicine or engineering under the ‘Inspirational Role Model of the Year’ category?

All you need for now is their name and email address, so it only takes a few seconds.

Go on. You know you want to. The link is here.

(Lack of) Diversity in STEM Subjects

Posted in Science Politics with tags , , , , , , on May 10, 2013 by telescoper

Among the things I learnt over the last few days was some interesting information about the diversity (or, rather, lack of diversity) of undergraduates taking undergraduate degrees in STEM subjects in the UK universities. For those of you not up on the lingo, `STEM’ is short for Science, Technology, Engineering and Mathematics. Last year the Institute of Physics produced a report that contains a wealth of statistical information about the demographics of the undergraduate population, from which the following numbers are only a small component.

Physics

Maths

Chemistry

Engineering

Female

21%

41%

44%

12%

BME

11%

24%

20%

30%

Socio-Economic

37%

42%

43%

51%

Non-EU

5%

12%

7%

32%

For completeness I should point out that these numbers refer to first-year undergraduates in 2010-11; I have no particular reason to suppose there has been a qualitative change since then. “BME” stands for “Black and Minority Ethnic”, and “Socio-Economic” refers to students whose with parents not employed in managerial or professional positions.

Overall, the figures here at the University of Sussex are roughly in line with, but slightly better than, these national statistics; the proportion of female students in our Physics intake for 2010/11, for example, was 27%.

There are some interesting (and rather disappointing) things to remark. First is that the proportion of Physics students who are female remains low; Physics scores very badly on ethnic diversity too. Mathematics on the other hand seems a much more attractive subject for female students.  Notice also how Physics and Chemistry attract a very small proportion of overseas students compared to Engineering.

In summary, therefore, we can see that Physics is a subject largely studied by white  middle-class European males. What are we doing wrong?

Despite considerable efforts to promote Physics to a more diverse constituency,  the proportion of, e.g., female physics students seems to have been bumping along at around 20% for ages.  Interestingly, all the anecdotal evidence suggests that those women who do Physics at University do disproportionately well, in the sense that female students constitute a  much larger fraction of First-class graduates than 20%. This strongly suggests that the problem lies at school level; some additional IOP information and discussion on this can be found here.

I’m just passing these figures on for information, as I’m quite often asked about them during, e.g., admissions-related activities. I don’t have any really compelling suggestions, but I would like to invite the blogosphere to comment and/or make suggestions as to promote diversity in STEM disciplines.

Engineering a Conflict

Posted in Finance, Politics, Science Politics with tags , , , on October 25, 2010 by telescoper

I don’t have time to post much today so I thought I’d just put up a quick item about something that the e-astronomer (aka Andy Lawrence) has already blogged about, and generated a considerable amount of discussion about so I’ll just chip in with my two-penny-worth.

Some time ago I posted an item explaining how, in the run-up to last week’s Comprehensive Spending Review, the Royal Academy of Engineering had argued, in a letter to the Department of Business, Innovation and Skills (BIS), that government research funding should be

… concentrated on activities from which a contribution to the economy, within the short to medium term, is foreseeable. I recognise that this calls for significant changes in practice but I see no alternative in the next decade. This may mean disinvesting in some areas in order properly to invest in others.

They went on to say that

BIS should also consider the productivity of investment by discipline and then sub-discipline. Once the cost of facilities is taken into account it is evident that ‘Physics and Maths’ receive several times more expenditure per research active academic compared to those in ‘Engineering and Technology’. This ratio becomes significantly more extreme if the comparison is made between particle physics researchers and those in engineering and technology. Much of particle physics work is carried out at CERN and other overseas facilities and therefore makes a lower contribution to the intellectual infrastructure of the UK compared to other disciplines. Additionally, although particle physics research is important it makes only a modest contribution to the most important challenges facing society today, as compared with engineering and technology where almost all the research is directly or indirectly relevant to wealth creation.

I had hoped that this unseemly attack on particle physics would have been seen for what it was and would have faded into the background, but a recent article by Colin Macilwain has brought it back into the spotlight. I quote

UK engineers have started a scrap that will grow uglier as the spending cuts begin.

I should add that MacIlwain isn’t particularly supportive of the engineers’ position, but he does make some interesting remarks on the comparitively low status held by engineers in the United Kingdom compared to other countries, a point alsotaken up on Andy Lawrence’s blog. In my opinion this bare-faced attempt to feather their own nest at the expense of fundamental physics isn’t likely to generate many new admirers. Neither is the fact – and this is a point I’ve tried to make before – that the engineers’ argument simply doesn’t hold any water in the first place.

The point they are trying to make is that research in engineering is more likely to lead to rapid commercial exploitation than research in particle physics. That may be true, but it’s not a good argument for the government to increase the amount of research funding. If engineering and applied science really is “near market” in the way that the RAEng asserts, then it shouldn’t need research grants, but should instead be supported by venture capital or direct investment from industry. The financial acumen likely to be available from such investors will be much for useful for the commercial exploitation of any inventions or discoveries than a government-run research council. To be fair, as MacIlwain’s article explains, a large fraction of engineering research (perhaps 75%) is funded by commerce and industry. Moreover some engineering research is also too speculative for the market to touch and therefore does merits state support. However, that part that needs state support needs it for precisely the same reason that particle physics does, i.e. that its potential is long-term rather than short term. This means that is in the same boat as fundamental physics and shouldn’t keep pretending that it isn’t. If engineering research needs government funding then ipso facto it’s not likely to generate profits in the short term.

I think scientists and engineers would all be better off if they worked together to emphasize the amazingly successful links between fundamental physics and technology, as demonstrated by, e.g., the Large Hadron Collider at CERN and the mutual interdependence of their disciplines.

United we stand, and all that…


Share/Bookmark