Archive for Equation of Time

The Summer Solstice 2019

Posted in Uncategorized with tags , , , , , , on June 21, 2019 by telescoper

The Summer Solstice in the Northern hemisphere happens today, Friday 21st June 2019, at 16.54 Irish Time (15.54 UTC). Among other things, this means that today is the longest day of the year. Days will get shorter from now until the Winter Solstice in December. Saturday June 22nd will be two seconds shorter than today!

This does not mean that sunset will necessarily happen earlier tomorrow than it does today however.  This is because there is a difference between mean solar time (measured by clocks) and apparent solar time (defined by the position of the Sun in the sky), so that a solar day does not always last exactly 24 hours. A description of apparent and mean time was given by Nevil Maskelyne in the Nautical Almanac for 1767:

Apparent Time is that deduced immediately from the Sun, whether from the Observation of his passing the Meridian, or from his observed Rising or Setting. This Time is different from that shewn by Clocks and Watches well regulated at Land, which is called equated or mean Time.

The discrepancy between mean time and apparent time arises because of the Earth’s axial tilt and the fact that it travels around the Sun in an elliptical orbit in which its orbital speed varies with time of year (being faster at perihelion than at aphelion).

Using a rapid calculational tool (Google), I found a table of the local mean times of sunrise and sunset for Dublin around the 2019 summer solstice. This shows that today is indeed the longest day (with a time between sunrise and sunset of 17 hours and 10 seconds), but sunset on 22nd June is actually a bit later than this evening, while sunrise is a bit later.

In fact if you plot the position of the Sun in the sky at a fixed time each day from a fixed location on the Earth you get a thing called an analemma, which is a sort of figure-of-eight curve whose shape depends on the observer’s latitude. Here’s a photographic version taken in Edmonton, with photographs of the Sun’s position taken from the same position at the same time on different days over the course of a year:

maxresdefault

The summer solstice is the uppermost point on this curve and the winter solstice is at the bottom. The north–south component of the analemma is the Sun’s declination, and the east–west component is the so-called equation of time which quantifies the difference between mean solar time and apparent solar time. This curve can be used to calculate the earliest and/or latest sunrise and/or sunset.

 

 

Advertisements

The Winter Solstice 2018

Posted in The Universe and Stuff with tags , , , , , , on December 21, 2018 by telescoper

The winter solstice in the Northern hemisphere happens today, Friday 21st December 2018, at 22.23 Irish Time (22.23 UTC). Among other things, this means that today is the shortest day of the year. Days will get longer from now until the Summer Solstice next June.  In fact, the interval between sunrise and sunset tomorrow will be a whole second longer tomorrow than it is today. Yippee!

This does not mean that sunrise will happen earlier tomorrow than it did this morning, however. Actually, sunrise will carry on getting later until the new year. This is because there is a difference between mean solar time (measured by clocks) and apparent solar time (defined by the position of the Sun in the sky), so that a solar day does not always last exactly 24 hours. A description of apparent and mean time was given by Nevil Maskelyne in the Nautical Almanac for 1767:

Apparent Time is that deduced immediately from the Sun, whether from the Observation of his passing the Meridian, or from his observed Rising or Setting. This Time is different from that shewn by Clocks and Watches well regulated at Land, which is called equated or mean Time.

The discrepancy between mean time and apparent time arises because of the Earth’s axial tilt and the fact that it travels around the Sun in an elliptical orbit in which its orbital speed varies with time of year (being faster at perihelion than at aphelion).

In fact if you plot the position of the Sun in the sky at a fixed time each day from a fixed location on the Earth you get a thing called an analemma, which is a sort of figure-of-eight shape whose shape depends on the observer’s latitude. Here’s a photographic version taken in Edmonton, with photographs of the Sun’s position taken from the same position at the same time on different days over the course of a year:

maxresdefault

The winter solstice is the lowermost point on this curve and the summer solstice is at the top. The north–south component of the analemma is the Sun’s declination, and the east–west component is the so-called equation of time which quantifies the difference between mean solar time and apparent solar time. This curve can be used to calculate the earliest and/or latest sunrise and/or sunset.

Using a more rapid calculational tool (Google), I found a table of the local mean times of sunrise and sunset for Dublin around the 2018 winter solstice. This shows that today is indeed the shortest day (with a time between sunrise and sunset of 7 hours 29 minutes and 59 seconds).  The table also shows that sunset already started occurring later in the day before the winter solstice, and sunrise will continue to happen later for a few days after the solstice, notwithstanding the fact that the interval between sunrise and sunset gets longer from today onwards.

I hope this clarifies the situation.

The Winter Solstice

Posted in The Universe and Stuff with tags , , , , , on December 21, 2017 by telescoper

The winter solstice in the Northern hemisphere happens today, Thursday 21st December 2017, at 16.28 GMT (16.28 UTC). This marks the shortest day of the year: days will get longer from now until the Summer Solstice next June.  In fact the interval between sunrise and sunset tomorrow will be a whole two seconds longer tomorrow than it is today. Yippee!

Anyway, in advance of this forthcoming celestial event I thought I’d present some solstitial facts for your entertainment and edification or so you can bore people with them in the pub later on.

As we were discussing in the office today, however, this does not mean that sunrise will happen earlier tomorrow than it did this morning. In fact, sunrise will carry on getting later until the new year. This is because there is a difference between mean solar time (measured by clocks) and apparent solar time (defined by the position of the Sun in the sky), so that a solar day does not always last exactly 24 hours. A description of apparent and mean time was given by Nevil Maskelyne in the Nautical Almanac for 1767:

Apparent Time is that deduced immediately from the Sun, whether from the Observation of his passing the Meridian, or from his observed Rising or Setting. This Time is different from that shewn by Clocks and Watches well regulated at Land, which is called equated or mean Time.

The discrepancy between mean time and apparent time arises because of the Earth’s axial tilt and the fact that it travels around the Sun in an elliptical orbit in which its orbital speed varies with time of year (being faster at perihelion than at aphelion).

In fact if you plot the position of the Sun in the sky at a fixed time each day from a fixed location on the Earth you get a thing called an analemma, which is a sort of figure-of-eight shape whose shape depends on the observer’s latitude. Here’s a photographic version taken in Edmonton, with photographs of the Sun’s position taken from the same position at the same time on different days over the course of a year:

maxresdefault

The winter solstice is the lowermost point on this curve and the summer solstice is at the top. The north–south component of the analemma is the Sun’s declination, and the east–west component is the so-called equation of time which quantifies the difference between mean solar time and apparent solar time. This curve can be used to calculate the earliest and/or latest sunrise and/or sunset.

Using a more rapid calculational tool (Google), I found a table of the local mean times of sunrise and sunset for Cardiff (where I live) around the 2016 winter solstice. The table shows that today is indeed the shortest day (with a time between sunrise and sunset of 7 hours 49 minutes and 59 seconds).  The table also shows that sunset already started occurring later in the day before the winter solstice (although the weather has been too overcast to notice this), and sunrise will continue to happen later for a few days after the solstice. In fact the earliest sunset this year in Cardiff was on 12th December, and the latest sunrise will be on 30th December.

I hope this clarifies the situation.

The Sundial of Trevithick 

Posted in The Universe and Stuff with tags , , on May 26, 2017 by telescoper

Since it’s a lovely sunny day in Cardiff – and already very warm – I thought I’d step outside the office of the Cardiff University Data Innovation Research Institute which is situated in the Trevithick Building and take a picture of our new sundial:

This flat sundial was installed by a company called Border Sundials and is designed very carefully to be as accurate as possible for the particular wall on which it is place. It’s also corrected for longitude.

However, I took the photograph at about 10.30am, and you’ll notice that it’s showing about 9.30. That’s because it hasn’t been corrected for British Summer Time so it’s offset by an hour. Moreover, a sundial always shows the local solar time rather than mean time which is shown on clocks. These differ because of (a) the inclination of the Earth’s orbit around the Sun relative to the equator and (b) the eccentricity of the Earth’s orbit around the Sun, which means that it does not move at a constant speed. The difference between mean time and solar time can be reconciled using the equation of time. The maximum correction is about 15 minutes, which is large enough to be seen on a sundial of this type. Often a graph of the equation of time is placed next to a sundial so one can do the correct oneself, but for some reason there isn’t one here.

The sundial adds quite a lot of interest to what otherwise is a featureless brick wall and we often notice people looking at it outside our office.

The Winter Solstice and the Time of Sunrise and Sunset

Posted in The Universe and Stuff with tags , , , , , on December 21, 2016 by telescoper

You may have missed it, but the winter solstice happened today, Wednesday 21st December 2016, at 10.44am GMT (10.44 UTC). This marks the shortest day of the year: days will get longer from now until the Summer Solstice next June. As we were discussing in the pub last night, however, this does not mean that sunrise will happen earlier tomorrow than it did this morning. In fact, sunrise will carry on getting later until the new year. This is because there is a difference between mean solar time (measured by clocks) and apparent solar time (defined by the position of the Sun in the sky), so that a solar day does not always last exactly 24 hours. A description of apparent and mean time was given by Nevil Maskelyne in the Nautical Almanac for 1767:

Apparent Time is that deduced immediately from the Sun, whether from the Observation of his passing the Meridian, or from his observed Rising or Setting. This Time is different from that shewn by Clocks and Watches well regulated at Land, which is called equated or mean Time.

The discrepancy between mean time and apparent time arises because of the Earth’s axial tilt and the fact that it travels around the Sun in an elliptical orbit in which its orbital speed varies with time of year (being faster at perihelion than at aphelion).

In fact if you plot the position of the Sun in the sky at a fixed time each day from a fixed location on the Earth you get a thing called an analemma, which is a sort of figure-of-eight shape whose shape depends on the observer’s latitude. Here’s a photographic version taken in Edmonton, with photographs of the Sun’s position taken from the same position at the same time on different days over the course of a year:

maxresdefault

The winter solstice is the lowermost point on this curve and the summer solstice is at the top. The north–south component of the analemma is the Sun’s declination, and the east–west component is the so-called equation of time which quantifies the difference between mean solar time and apparent solar time. This curve can be used to calculate the earliest and/or latest sunrise and/or sunset.

Using a more rapid calculational tool (Google), I found a table of the local mean times of sunrise and sunset for Cardiff (where I live) around the 2016 winter solstice. The table shows that today is indeed the shortest day (with a time between sunrise and sunset of 7 hours 49 minutes and 55 seconds). The duration of the shortest day this year is 8 hours and 48 minutes shorter than the longest day (the summer solstice). The table also shows that sunset already started occurring later in the day before the winter solstice (although the weather has been too overcast to notice this), and sunrise will continue to happen later for a few days after the solstice. In fact the earliest sunset this year in Cardiff was on 12th December, and the latest sunrise will be on 30th December.

I hope this clarifies the situation.