Archive for Galaxy redshift surveys

R.I.P. Olivier Le Fèvre (1960-2020)

Posted in The Universe and Stuff with tags , , , , , on June 29, 2020 by telescoper

Olivier Le Fèvre (1960-2020)

The international cosmological community was deeply saddened last week to hear of the death on 25th June after a long illness of Olivier Le Fèvre. He was 59 years old.

Olivier was a specialist in astronomical spectroscopy and as such he made important contributions to cosmology through galaxy redshift surveys. He was Director of the Laboratoire d’Astrophysique de Marseille from 2004 to 2011. In latter years he was involved, among many other things, in the Euclid space mission.

You can find a full obituary and appreciation of Olivier’s life and work here. His funeral takes place this morning and there is an online book of condolence here to send messages of condolence and support to his family, friends and colleagues at this difficult time.

Rest in peace, Olivier Le Fèvre (1960-2020).

First Light at the Dark Energy Spectroscopic Instrument

Posted in The Universe and Stuff with tags , , , , , , on November 4, 2019 by telescoper

While I was away last week there was quite a lot of press coverage (e.g. here) about the new Dark Energy Spectroscopic Instrument, which has just seen first light. I didn’t have time to mention this until now, and in any case  I have little to add to the coverage that has already appeared, but it does give me the excuse to post this nice video – which features quite a few people I actually know! – to describe  the huge galaxy survey that DESI will perform. It’s hard to believe that when I started in the field in 1985 the largest such survey, which took several years to compile, had only a few thousand galaxies in it. The DESI instrument will be able to determine spectra of more sources than that in a single pointing of the telescope that lasts about 20 minutes. Overall it should determine redshifts of over 35 million galaxies! Vorsprung durch Technik.

 

 

The Power Spectrum and the Cosmic Web

Posted in Bad Statistics, The Universe and Stuff with tags , , , , , , on June 24, 2014 by telescoper

One of the things that makes this conference different from most cosmology meetings is that it is focussing on the large-scale structure of the Universe in itself as a topic rather a source of statistical information about, e.g. cosmological parameters. This means that we’ve been hearing about a set of statistical methods that is somewhat different from those usually used in the field (which are primarily based on second-order quantities).

One of the challenges cosmologists face is how to quantify the patterns we see in galaxy redshift surveys. In the relatively recent past the small size of the available data sets meant that only relatively crude descriptors could be used; anything sophisticated would be rendered useless by noise. For that reason, statistical analysis of galaxy clustering tended to be limited to the measurement of autocorrelation functions, usually constructed in Fourier space in the form of power spectra; you can find a nice review here.

Because it is so robust and contains a great deal of important information, the power spectrum has become ubiquitous in cosmology. But I think it’s important to realise its limitations.

Take a look at these two N-body computer simulations of large-scale structure:

The one on the left is a proper simulation of the “cosmic web” which is at least qualitatively realistic, in that in contains filaments, clusters and voids pretty much like what is observed in galaxy surveys.

To make the picture on the right I first  took the Fourier transform of the original  simulation. This approach follows the best advice I ever got from my thesis supervisor: “if you can’t think of anything else to do, try Fourier-transforming everything.”

Anyway each Fourier mode is complex and can therefore be characterized by an amplitude and a phase (the modulus and argument of the complex quantity). What I did next was to randomly reshuffle all the phases while leaving the amplitudes alone. I then performed the inverse Fourier transform to construct the image shown on the right.

What this procedure does is to produce a new image which has exactly the same power spectrum as the first. You might be surprised by how little the pattern on the right resembles that on the left, given that they share this property; the distribution on the right is much fuzzier. In fact, the sharply delineated features  are produced by mode-mode correlations and are therefore not well described by the power spectrum, which involves only the amplitude of each separate mode. In effect, the power spectrum is insensitive to the part of the Fourier description of the pattern that is responsible for delineating the cosmic web.

If you’re confused by this, consider the Fourier transforms of (a) white noise and (b) a Dirac delta-function. Both produce flat power-spectra, but they look very different in real space because in (b) all the Fourier modes are correlated in such away that they are in phase at the one location where the pattern is not zero; everywhere else they interfere destructively. In (a) the phases are distributed randomly.

The moral of this is that there is much more to the pattern of galaxy clustering than meets the power spectrum…

Power versus Pattern

Posted in Bad Statistics, The Universe and Stuff with tags , , , , , on June 15, 2012 by telescoper

One of the challenges we cosmologists face is how to quantify the patterns we see in galaxy redshift surveys. In the relatively recent past the small size of the available data sets meant that only relatively crude descriptors could be used; anything sophisticated would be rendered useless by noise. For that reason, statistical analysis of galaxy clustering tended to be limited to the measurement of autocorrelation functions, usually constructed in Fourier space in the form of power spectra; you can find a nice review here.

Because it is so robust and contains a great deal of important information, the power spectrum has become ubiquitous in cosmology. But I think it’s important to realise its limitations.

Take a look at these two N-body computer simulations of large-scale structure:

The one on the left is a proper simulation of the “cosmic web” which is at least qualitatively realistic, in that in contains filaments, clusters and voids pretty much like what is observed in galaxy surveys.

To make the picture on the right I first  took the Fourier transform of the original  simulation. This approach follows the best advice I ever got from my thesis supervisor: “if you can’t think of anything else to do, try Fourier-transforming everything.”

Anyway each Fourier mode is complex and can therefore be characterized by an amplitude and a phase (the modulus and argument of the complex quantity). What I did next was to randomly reshuffle all the phases while leaving the amplitudes alone. I then performed the inverse Fourier transform to construct the image shown on the right.

What this procedure does is to produce a new image which has exactly the same power spectrum as the first. You might be surprised by how little the pattern on the right resembles that on the left, given that they share this property; the distribution on the right is much fuzzier. In fact, the sharply delineated features  are produced by mode-mode correlations and are therefore not well described by the power spectrum, which involves only the amplitude of each separate mode.

If you’re confused by this, consider the Fourier transforms of (a) white noise and (b) a Dirac delta-function. Both produce flat power-spectra, but they look very different in real space because in (b) all the Fourier modes are correlated in such away that they are in phase at the one location where the pattern is not zero; everywhere else they interfere destructively. In (a) the phases are distributed randomly.

The moral of this is that there is much more to the pattern of galaxy clustering than meets the power spectrum…