I heard on the radio this morning from that nice Mr Cowan that today is the anniversary of the start of the Great Fire of London which burned for four days in 1666. That provides for a bit of delayed synchronicity with yesterday’s post about the dreadful fires in the outskirts of Los Angeles and a similar conflagration in Athens (which now thankfully appears to be under control).
Fires are of course terrifying phenomena, and it must be among most people’s nightmares to be caught in one. The cambridge physicist Steve Gull experienced this at first hand when his boat exploded and caught fire recently. I’ll take this opportunity to wish him a speedy recovery from his injuries.
But frightening as such happenings are, a flame (the visible, light emitting part of a fire) can also be a very beautiful and fascinating spectacle. Flames are stable long-lived phenomena involving combustion in which a “fuel”, often some kind of hydrocarbon, reacts with an oxidizing element which, in the case of natural wildfires at any rate, is usually oxygen. However, along the way, many intermediate radicals are generated and the self-sustaining nature of the flame is maintained by intricate reaction kinetics.
The shape and colour of a flame is determined not just by its temperature but also, in a complicated way, by diffusion, convection and gravity. In a diffusion flame, the fuel and the oxidizing agent diffuse into each other and the rate of diffusion consequently limits the rate at which the flame spreads. Usually combustion takes place only at the edge of the flame: the interior contains unburnt fuel. A candle flame is usually relatively quiescent because the flow of material in it is predominantly laminar. However, at higher speeds you can find turbulent flames, like in the picture below!
Sometimes convection carries some of the combustion products away from the source of the flame. In a candle flame, for example, incomplete combustion forms soot particles which are convected upwards and then incandesce inside the flame giving it a yellow colour. Gravity limits the motion of heavier products away from the source. In a microgravity environment, flames look very different!
All this stuff about flames also gives me the opportunity to mention the great Russian physicist Yakov Borisovich Zel’dovich. To us cosmologists he is best known for his work on the large-scale structure of the Universe, but he only started to work on that subject relatively late in his career during the 1960s. He in fact began his career as a physical chemist and arguably his greatest contribution to science was that he developed the first completely physically based theory of flame propagation (together with Frank-Kamenetskii). No doubt he used insights gained from this work, together with his studies of detonation and shock waves, in the Soviet nuclear bomb programme in which he was a central figure.
But one thing even Zel’dovich couldn’t explain is why fires are such fascinating things to look at. I remember years ago having a fire in my back garden to get rid of garden rubbish. The more it burned the more things I wanted to throw on it, to see how well they would burn rather than to get rid of them. I ended up spending hours finding things to burn, building up a huge inferno, before finally retiring indoors, blackened with soot.
I let the fire die down, but it smouldered for three days.