Archive for Hubble constant

Early Dark Energy and Cosmic Tension

Posted in The Universe and Stuff with tags , , , , , on March 19, 2020 by telescoper

To avoid talking any more about you-know-what I thought I would continue the ongoing Hubble constant theme. Rhere is an interesting new paper on the arXiv (by Hill et al.) about the extent to which a modified form of dark energy might relieve the current apparent tension.

The abstract is:

 

You can click on this to make it bigger; you can also download the PDF here.

I think the conclusion is clear and it may or may not be related to a previous post of mine here about the implications of Etherington’s theorem.

Here’s my ongoing poll on the Hubble constant poll. Feel free to while away a few seconds of your time working from home casting a vote!

 

 

Voids, Galaxies and Cosmic Acceleration

Posted in The Universe and Stuff with tags , , , , , , on February 4, 2020 by telescoper

Time for a quick plug for a paper by Nadathur et al. that appeared on the arXiv recently with the title Testing low-redshift cosmic acceleration with large-scale structure. Here is the abstract:

You can make it bigger by clicking on the image. You can download a PDF of the entire paper here.

The particularly interesting thing about this result is that it gives strong evidence for models with a cosmological constant (or perhaps some other form of dark energy), in a manner that is independent of the other main cosmological constraints (i.e. the Cosmic Microwave Background or Type 1a Supernovae). This constraint is based on combining properties of void regions (underdensities) with Baryon Acoustic Oscillations (BAOs) to produce constraints that are stronger than those obtained using BAOs on their own. The data used derives largely from the BOSS survey.

As well as this there’s another intriguing result, or rather two results. First is that the the BAO+voids data from redshifts z<2 gives H0 = 72.3 ± 1.9, while, on the other hand adding, BAO information from the Lyman-alpha forest for from z>2 gives a value H0 = 69 \pm 1.2, favouring Planck over Riess. Once again, the `tension’ over the value of the Hubble constant appears to be related to using nearby rather than distant sources.

More Cosmic Tension?

Posted in The Universe and Stuff with tags , , , , , , , , , on November 12, 2019 by telescoper

Quite a lot of fuss was being made in cosmological circles while I was away last week concerning a paper that had just been published in Nature Astronomy by Eleonora Di Valentino, Alessandro Melchiorri and Joe Silk that claims evidence from the Planck Cosmic Microwave background and other data that the Universe might be closed (or at least have positive spatial curvature) in contrast to the standard cosmological model in which the spatial geometry is Euclidean. Nature Astronomy is behind a paywall but the paper is available for free on the arXiv here. The abstract reads:

The recent Planck Legacy 2018 release has confirmed the presence of an enhanced lensing amplitude in CMB power spectra compared to that predicted in the standard ΛCDM model. A closed universe can provide a physical explanation for this effect, with the Planck CMB spectra now preferring a positive curvature at more than 99% C.L. Here we further investigate the evidence for a closed universe from Planck, showing that positive curvature naturally explains the anomalous lensing amplitude and demonstrating that it also removes a well-known tension within the Planck data set concerning the values of cosmological parameters derived at different angular scales. We show that since the Planck power spectra prefer a closed universe, discordances higher than generally estimated arise for most of the local cosmological observables, including BAO. The assumption of a flat universe could, therefore, mask a cosmological crisis where disparate observed properties of the Universe appear to be mutually inconsistent. Future measurements are needed to clarify whether the observed discordances are due to undetected systematics, or to new physics, or simply are a statistical fluctuation.

I think the important point to take from this study is that estimates of cosmological parameters obtained from Planck are relatively indirect, in that they involve the simultaneous determination of several parameters some of which are almost degenerate. For example, the `anomalous’ lensing amplitude discussed in this paper is degenerate with the curvature so that changing one could mimic the effect on observables of changing the other; see Figure 2 in the paper.

It’s worth mentioning another (and, in my opinion, better argued) paper on a similar topic by Will Handley of Cambridge which is on the arXiv here. The abstract of this one reads:

The curvature parameter tension between Planck 2018, cosmic microwave background lensing, and baryon acoustic oscillation data is measured using the suspiciousness statistic to be 2.5 to 3σ. Conclusions regarding the spatial curvature of the universe which stem from the combination of these data should therefore be viewed with suspicion. Without CMB lensing or BAO, Planck 2018 has a moderate preference for closed universes, with Bayesian betting odds of over 50:1 against a flat universe, and over 2000:1 against an open universe.

Figure 1 makes a rather neat point that the combination of Planck and Baryon Acoustic Oscillations does not separately give consistent values for the Hubble constant and the curvature and neither does the combination of Planck and direct Hubble constant estimates:

I don’t know what the resolution of these tensions is, but I think it is a bit dangerous to dismiss them simply as statistical flukes. They might be that, of course, but they also might not be. By shrugging one’s shoulders and ignoring such indications one might miss something very fundamental. On the other hand, in my opinion, there is nothing here that definitely points the finger at spatial curvature either: it is possible that there is something else missing from the standard model that, if included, would resolve these tensions. But what is the missing link?

Answers on a postcard, or through the comments box.

Gravitational Lensing, Cosmological Distances and the Hubble Constant

Posted in The Universe and Stuff with tags , , , on October 17, 2019 by telescoper

To continue the ongoing Hubble constant theme, there is an interesting paper on the arXiv by Shajib et al. about determining a distance to a gravitational lens system; I grabbed the above pretty picture from the paper.

The abstract is:

 

You can click on this to make it bigger. You will see that this approach gives a `high’ value of H0 ≈ 74.2, consistent with local stellar distances measures, rather than with the `cosmological’ value which comes in around H0 ≈ 67 or so. It’s also consistent with the value derived from other gravitational lens studies discussed here.

Here’s my ongoing poll on the Hubble constant, with

 

 

More Hubble Constant Tension

Posted in The Universe and Stuff with tags , , , on October 14, 2019 by telescoper

Here’s the abstract of another contribution to ongoing discussions around so-called tension between different estimates of the Hubble Constant (see this blog passim):

You can find the actual paper (by Lin, Mack and Hou) on the arXiv here.

Now, before Mr Hine starts to fill up my blocked comments folder with rants, I will add a few comments of my own.

First, at the Royal Astronomical Society on Friday I discussed all this with a renowned observational astronomer and expert on stellar distance measurements. He agreed with me that if the `tension’ is indeed real then it is far more likely to be a problem with stellar distance measurements than the cosmology.

Second, I am writing a review of all this to be published in Astronomy & Geophysics next year. Watch this space.

Third, this gives me an excuse to include yet again my poll on whether you are worried about the “tension”:

Hubble Tension: an “Alternative” View?

Posted in Bad Statistics, The Universe and Stuff with tags , , , , , on July 25, 2019 by telescoper

There was a new paper last week on the arXiv by Sunny Vagnozzi about the Hubble constant controversy (see this blog passim). I was going to refrain from commenting but I see that one of the bloggers I follow has posted about it so I guess a brief item would not be out of order.

Here is the abstract of the Vagnozzi paper:

I posted this picture last week which is relevant to the discussion:

The point is that if you allow the equation of state parameter w to vary from the value of w=-1 that it has in the standard cosmology then you get a better fit. However, it is one of the features of Bayesian inference that if you introduce a new free parameter then you have to assign a prior probability over the space of values that parameter could hold. That prior penalty is carried through to the posterior probability. Unless the new model fits observational data significantly better than the old one, this prior penalty will lead to the new model being disfavoured. This is the Bayesian statement of Ockham’s Razor.

The Vagnozzi paper represents a statement of this in the context of the Hubble tension. If a new floating parameter w is introduced the data prefer a value less than -1 (as demonstrated in the figure) but on posterior probability grounds the resulting model is less probable than the standard cosmology for the reason stated above. Vagnozzi then argues that if a new fixed value of, say, w = -1.3 is introduced then the resulting model is not penalized by having to spread the prior probability out over a range of values but puts all its prior eggs in one basket labelled w = -1.3.

This is of course true. The problem is that the value of w = -1.3 does not derive from any ab initio principle of physics but by a posteriori of the inference described above. It’s no surprise that you can get a better answer if you know what outcome you want. I find that I am very good at forecasting the football results if I make my predictions after watching Final Score

Indeed, many cosmologists think any value of w < -1 should be ruled out ab initio because they don’t make physical sense anyway.

 

 

 

The Last Resting Place of the Hubble Parameter?

Posted in Uncategorized with tags , , , on July 22, 2019 by telescoper

Last week was rather busy on the blog, with a run of posts about the Hubble constant (or, more precisely, the  present value of the Hubble parameter) attracting the most traffic. Somehow during all the excitement I allowed myself to be persuaded to write a piece for RTÉ Brainstorm about this issue. My brief is to write a detailed account of the current controversy in language accessible to a lay reader in not more than 800 words. That’s quite a challenge. Better get on with it.

Perhaps after that I’ll be able to lay the Hubble parameter to rest, at least for a while:

The original photograph (and joke) may be found here.