Archive for LIGO

GW170608—The underdog

Posted in The Universe and Stuff with tags , , on November 20, 2017 by telescoper

Interesting post from a gravitational wave researcher, telling the inside story of the latest gravitational wave detection (a binary black hole merger) announced last week.

 

 

Christopher Berry

Detected in June, GW170608 has had a difficult time. It was challenging to analyse, and neglected in favour of its louder and shinier siblings. However, we can now introduce you to our smallest chirp-mass binary black hole system!

Family of adorable black holes The growing family of black holes. From Dawn Finney.

Our family of binary black holes is now growing large. During our first observing run (O1) we found three: GW150914, LVT151012 and GW151226. The advanced detector observing run (O2) ran from 30 November 2016 to 25 August 2017 (with a couple of short breaks). From our O1 detections, we were expecting roughly one binary black hole per month. The first same in January, GW170104, and we have announced the first detection which involved Virgo from August, GW170814, so you might be wondering what happened in-between? Pretty much everything was dropped following the detection of our first…

View original post 1,790 more words

Advertisements

And then there were five….

Posted in The Universe and Stuff with tags , , , , , , on November 17, 2017 by telescoper

…black hole mergers detected via gravitational waves, that is. Here are the key measurements for Number 5, codename GW170608. More information can be found here.

Here is the abstract of the discovery paper:

On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by the two Advanced LIGO detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses 12+7-2 M⊙ and 7+2-2 M⊙ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through gravitational waves with electromagnetic observations. The source’s luminosity distance is 340 +140-140Mpc, corresponding to redshift 0.07+0.03-0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

This merger seems to have been accompanied by a lower flux of press releases than previous examples…

Gravitational Waves Flash!

Posted in The Universe and Stuff with tags , , , , on October 13, 2017 by telescoper

I got up early this morning to hitch a ride in a car to Mumbai so that I can give a talk this afternoon. We left Pune about 6am and got here about 8.30 so the trip was a quite a bit quicker than coming here! I’ll post about that and include some pictures when I get a moment, but first I’ll post a quick announcement.

There will be an announcement on Monday 16th October at 10am EDT (3pm BST; 7.30pm in Pune) by `the National Science Foundation (NSF) as it brings together scientists from the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations, as well as representatives for some 70 observatories’. Further details can be found here. The European Southern Observatory has also announced that it will be holding a press conference on Monday about an `unprecedented discovery’.

The fact that it involves LIGO, Virgo and representatives of other observatories strongly suggests that this announcement will address the subject of the rumours that were flying around in August. In other words, it’s likely that on Monday we will hear about the first detecting of a coalescing binary neutron star system with an optical counterpart. Exciting times!

I’ll be back in Pune by Monday and will probably be able to watch the announcement and will update if and when I can.

Gravitational Wave Flash

Posted in The Universe and Stuff with tags , , , on September 27, 2017 by telescoper

Inconveniently timed just before I was due to go to the pub, a new announcement has come out from the LIGO and Virgo gravitational wave detectors. This time it reports a coalescing binary black hole system detected by all three instruments. The new source is called GW170814, which indicates that the signal from it was received by the detectors on the day I returned from Copenhagen this summer!

Here’s the key figure:

The paper is here and there’s a Nature comment piece here.

I have to say that, on its own, the Virgo `detection’ looks rather marginal to me, but assuming that it is a detection this graphic shows how much it helps to localize the source compared to previous signals:

More on this in due course, perhaps, but now I’m off for a pint or two…

LIGO/VIRGO Update

Posted in The Universe and Stuff with tags , , on August 30, 2017 by telescoper

Judging by by the WordPress blog statistics page, there’s been a lot of traffic here in the past week owing to my post about the rumours of a new gravitational wave source detected by LIGO (and possibly VIRGO). In the interest of completeness I’ll just post a quick update to mention that the latest Observation run at LIGO  finished as planned on 25th August, and this has been marked by an official announcement which I have taken the liberty of presenting here in full:

The Virgo and LIGO Scientific Collaborations have been observing since November 30, 2016 in the second Advanced Detector Observing Run ‘O2’ , searching for gravitational-wave signals, first with the two LIGO detectors, then with both LIGO and Virgo instruments operating together since August 1, 2017. Some promising gravitational-wave candidates have been identified in data from both LIGO and Virgo during our preliminary analysis, and we have shared what we currently know with astronomical observing partners. We are working hard to assure that the candidates are valid gravitational-wave events, and it will require time to establish the level of confidence needed to bring any results to the scientific community and the greater public. We will let you know as soon we have information ready to share.

The last two sentences can be translated roughly as “Back off, and give us time to analyse the data!”, which is not an unreasonable request. Judging by the timescale between detection and publication of the previous LIGO events, it will probably be a matter of months before a formal announcement is made.

I hope this clarifies the situation.

 

 

 

On the Time Lags of the LIGO signals

Posted in Bad Statistics, The Universe and Stuff with tags , , , on August 10, 2017 by telescoper

It seems that a lot of rumours are flying around on social media and elsewhere about the discussions that have been going on here in Copenhagen between members of the Niels Bohr Institute and of the LIGO scientific collaboration concerning matters arising from the `Danish Paper‘.  The most prominent among these appears to be the LIGO team and the Danish team have agreed on everything and that the Danish authors have conceded that they were mistaken in their claims. I have even been told that my recent blog posts gave the impression that this was the case. I’m not sure how, as all I’ve said is that the discussions reached agreement on some matters. I did not say what matters or whose position had changed.

I feel, therefore, that some clarification is necessary. Since I am a member of neither party to this controversy I have to tread carefully, and there are some things which I feel I should not discuss at all. I was invited to participate in the discussions as a neutral observer as a courtesy and I certainly don’t want to betray any confidences. On one thing, however, I can be perfectly clear. The Danish team (Cresswell et al.) have not retracted their claims and they reject the suggestion that their paper was wrong.

To reinforce this, I draw your attention to the fact that a revised version of `The Danish Paper’ has now been accepted for publication (in the Journal of Cosmology and Astroparticle Physics) and that this paper is now available on the arXiv. The referees raised a large number of queries, and in response to them all the revised version is almost double the length of the original.

Here is the arXiv entry page:

The main body of the paper has not been significantly modified and their main result – of an unexplained 7ms correlation in the background signal (referred to in the abstract as `noise’) – has not “gone away”. If you want to understand more, read the paper!

I’m sure there will be much more discussion of this and I will comment as appropriate when appropriate. In the meantime this remains very much a live issue.

P.S. In the interest of full disclosure I should mention that I did read over part of the revised version of the Danish paper and made some suggestions with regard to style and flow. I therefore have a mention in the acknowledgments of the final version. I was warned that I might expect some trouble for agreeing to be associated with the paper in this way but, as  Sam Spade says in The Maltese Falcon `I don’t mind a reasonable amount of trouble’…

LIGO and Open Science

Posted in Open Access, Science Politics, The Universe and Stuff with tags , , , , on August 8, 2017 by telescoper

I’ve just come from another meeting here at the Niels Bohr Institute between some members of the LIGO Scientific Collaboration and the authors of the `Danish Paper‘. As with the other one I attended last week it was both interesting and informative. I’m not going to divulge any of the details of the discussion, but I anticipate further developments that will put some of them into the public domain fairly soon and will comment on them as and when that happens.

I think an important aspect of the way science works is that when a given individual or group publishes a result, it should be possible for others to reproduce it (or not as the case may be). In normal-sized laboratory physics it suffices to explain the experimental set-up in the published paper in sufficient detail for another individual or group to build an equivalent replica experiment if they want to check the results. In `Big Science’, e.g. with LIGO or the Large Hadron Collider, it is not practically possible for other groups to build their own copy, so the best that can be done is to release the data coming from the experiment. A basic problem with reproducibility obviously arises when this does not happen.

In astrophysics and cosmology, results in scientific papers are often based on very complicated analyses of large data sets. This is also the case for gravitational wave experiments. Fortunately in astrophysics these days researchers are generally pretty good at sharing their data, but there are a few exceptions in that field. Particle physicists, by contrast, generally treat all their data as proprietary.

Even allowing open access to data doesn’t always solve the reproducibility problem. Often extensive numerical codes are needed to process the measurements and extract meaningful output. Without access to these pipeline codes it is impossible for a third party to check the path from input to output without writing their own version, assuming that there is sufficient information to do that in the first place. That researchers should publish their software as well as their results is quite a controversial suggestion, but I think it’s the best practice for science. In any case there are often intermediate stages between `raw’ data and scientific results, as well as ancillary data products of various kinds. I think these should all be made public. Doing that could well entail a great deal of effort, but I think in the long run that it is worth it.

I’m not saying that scientific collaborations should not have a proprietary period, just that this period should end when a result is announced, and that any such announcement should be accompanied by a release of the data products and software needed to subject the analysis to independent verification.

Now, if you are interested in trying to reproduce the analysis of data from the first detection of gravitational waves by LIGO, you can go here, where you can not only download the data but also find a helpful tutorial on how to analyse it.

This seems at first sight to be fully in the spirit of open science, but if you visit that page you will find this disclaimer:

 

In other words, one can’t check the LIGO data analysis because not all the data and tools necessary to do that are not publicly available.  I know for a fact that this is the case because of the meetings going on here at NBI!

Given that the detection of gravitational waves is one of the most important breakthroughs ever made in physics, I think this is a matter of considerable regret. I also find it difficult to understand the reasoning that led the LIGO consortium to think it was a good plan only to go part of the way towards open science, by releasing only part of the information needed to reproduce the processing of the LIGO signals and their subsequent statistical analysis. There may be good reasons that I know nothing about, but at the moment it seems to me to me to represent a wasted opportunity.

I know I’m an extremist when it comes to open science, and there are probably many who disagree with me, so I thought I’d do a mini-poll on this issue:

Any other comments welcome through the box below!