Archive for Moon

Supermoon Surgery

Posted in Biographical, The Universe and Stuff with tags , , , , , , , on August 11, 2014 by telescoper

I have a busy day today (including my Annual Appraisal) to kick off a very busy week dominated by the release of this years A-level results and consequent admissions business, so I’ll just post a quickie though one which is at least fairly topical.

Last night (10th August) I took a (not very good) picture of the Moon with my phone:

 

supermoon

This is a so-called “supermoon“, a not particularly rare phenomenon which takes place when there is a Full Moon that coincides with the Moon being at the point of its orbit which is closest to the Earth, i.e. its perigee. A much better name is “Perigee Full Moon”, but that somehow doesn’t seem to have caught on in the popular media. The Moon orbits the Earth in an ellipse rather than a circle and at its closest approach it is about 14% closer than at its furthest (apogee). It therefore looks about 14% bigger and about 30% brighter during a Perigee Full Moon than during an Apogee Full Moon.

The Moon was certainly looking very bright when I took the picture last night, at least compared to a few minutes later when it disappeared behind a supercloud.

The Moon’s proximity to Earth during this Full Moon does have a noticeable effect on terrestrial tides, but not a particularly strong one; certainly not enough to trigger the end of the world. Actually, the tides have an amplitude just a few inches higher than average during a Perigee Full Moon. In any case roughly one in 14 Full Moons is a supermoon so it’s actually quite a common event, and as far as I’m aware the world didn’t come to an end during the last one or the one before that or the one before that or…

Anyway, all this supermoon malarkey reminded me of something that happened about 15 years ago,  just after I had moved to Nottingham to take up the position of Professor of Astrophysics at the University of Nottingham. I was sitting in my office, working – blogs hadn’t been invented then – when the phone rang and the voice at the other end said May I speak to Professor Coles please? When I replied that I was he, the caller went on to explain that he was a surgeon who worked at Queen’s Medical Centre, a hospital located right next to the University of Nottingham, with teaching staff working for the University.

It turned out that news of the setting up of the new Astronomy group there had made it into the University newsletter which my caller had seen. He asked if I had a few moments to answer a question about astrophysics which had been bothering him for some time and which he had just been discussing with some of his colleagues.  I said yes, and he asked: Does the Moon rotate?

I paused a bit, thinking how best to explain, and he went on to clarify his point, which was that if the Moon always has the same face towards the Earth does that mean it’s not rotating?

Understanding his question, I went on to explain that, yes, the Moon does rotate and that the reason it always shows the same face to the Earth (more-or-less, ignoring libration) is that the period of its rotation is the same as the Moon’s orbital period around the Earth. I also explained how to demonstrate this with two coffee mugs, moving one in a circle around the other and rotating the outer one so as to keep the handle pointing towards the central mug. Moreover, I explained the physics of this phenomenon, which is called tidal locking, and pointed out other examples in astrophysics.

After this spiel the caller said that was all very interesting but he had to go  now. Assuming I had bored him, as I fear I tend to do rather a lot, I apologized for going on about it for too long. He said no he wasn’t at all bored by the detail I had put in, he found it all absolutely fascinating. The reason for him needing to go was that he had to go back to tell the answer to the colleagues he had been discussing it with  just before phoning me.  They were all  in the operating theatre,  standing around a patient lying on the operating table, waiting  for him to return and complete the operation he had left in order to make the call…

The Moon Doctor

Posted in Biographical, The Universe and Stuff with tags , , on November 4, 2011 by telescoper

I  worked all the way through my lunch break getting stuff ready for a short tripette that I have to make next week. My regular post-prandial blogpost  is consequently a bit later than usual, and also a bit shorter.

Anyway, the little orbital dynamics question I posted a couple of days ago, which seems to have attracted quite a number of responses, also reminded me of something that happened about 12 years ago,  just after I had moved to Nottingham to take up the position of Professor of Astrophysics at the University of Nottingham. I was sitting in my office, working – blogs hadn’t been invented then – when the phone rang and the voice at the other end said May I speak to Professor Coles please? When I replied that I was he, the caller went on to explain that he was a surgeon who worked at Queen’s Medical Centre, a hospital located right next to the University of Nottingham, with teaching staff working for the University.

It turned out that news of the setting up of the new Astronomy group there had made it into the University newsletter which my caller had seen. He asked if I had a few moments to answer a question about astrophysics which had been bothering him for some time and which he had just been discussing with some of his colleagues.  I said yes, and he asked: Does the Moon rotate?

I paused a bit, thinking how best to explain, and he went on to clarify his point, which was that if the Moon always has the same face towards the Earth does that mean it’s not rotating.

Understanding his question, I went on to explain that, yes, the Moon does rotate and that the reason it always shows the same face to the Earth (more-or-less, ignoring libration) is that the period of its rotation is the same as the Moon’s orbital period around the Earth. I also explained how to demonstrate this with two coffee mugs, moving one in a circle around the other and rotating the outer one so as to keep the handle pointing towards the central mug. Moreover, I explained the physics of this phenomenon, which is called tidal locking, and pointed out other examples in astrophysics.

After this spiel the caller said that was all very interesting but he had to go  now. Assuming I had bored him, as I fear I tend to do rather a lot, I apologized for going on about it for too long. He said no he wasn’t at all bored by the detail I had put in, he found it all absolutely fascinating. The reason for him needing to go was that he had to go back to tell the answer to the colleagues he had been discussing it with  just before phoning me.  They were all  in the operating theatre,  standing around a patient lying on the operating table, waiting  for him to return and complete the operation he had left in order to make the call…

Back to the Drawing Board

Posted in Art, Education, The Universe and Stuff with tags , , , , , , , , , on August 30, 2011 by telescoper

I came across a press release this morning which contains the following

More should be done to encourage students to use their drawing skills in science education, researchers at The University of Nottingham say.

In a paper being published in Science this week, academics say that although producing visualisations is key to scientific thinking, pupils are often not encouraged to create their own drawings to develop and demonstrate their understanding.

In the paper the authors, led by Dr Shaaron Ainsworth in the University’s School of Psychology and Learning Sciences Research Institute, said: “Scientists do not use words only but rely on diagrams, graphs, videos, photographs and other images to make discoveries, explain findings, and excite public interest.

In the light of this I thought it would be topical to post an updated version of an old piece I wrote on the theme of sketching. This is quite a strange subject for me to have picked pick because drawing is something I’m completely useless at, but I hope you’ll bear with me and hopefully it will make some sense in the end. I always thought that drawing was an important and neglected aspect of education, but I hadn’t until today any solid research to back it up!

-0-

What  spurred me on to think about this subject was the exhibit I was  involved with for the  Architecture Biennale in Venice as part of a project called Beyond Entropy organized by the Architectural Association School of Architecture. In the course of researching this project I came across this image of the Moon as drawn by Galileo

This led to an interesting discussion about the role of drawings like this in science. Of course  the use of sketches for the scientific representation of images has been superseded by photographic techniques, initially using film and more recently by digital techniques. The advantage of these methods is that they are quicker and also more “objective”. However, there are still many amateur astronomers who make drawings of the Moon as well as objects such as Jupiter and Saturn (which Galileo also drew). Moreover there are other fields in which experienced practioners continue to use pencil drawings in preference to photographic techniques. Archaeology provides many good examples, e.g.

The reason sketching still has a role in such fields is not that it can compete with photography for accuracy or objectivity but that there’s something about the process of sketching that engages the sketcher’s brain in a  way that’s very different from taking a photograph. The connection between eye, brain and hand seems to involve a cognitive element that is extremely useful in interpreting notes at a later date. In fact it’s probably their very subjectivity that makes them useful.  A thicker stroke of the pencil, or deliberately enhanced shading, or leaving out seemingly irrelevant detail, can help pick out  features that seem to the observer to be of particular significance. Months later when you’re trying to write up what you saw from your notes, those deliberate interventions against objectivity will take you back to what you  saw with your mind, not just with your eyes.

It doesn’t even matter whether or not you can draw well. The point isn’t so much to explain to other people what you’ve seen, but to record your own interaction with the object you’ve sketched in a way that allows you to preserve something more than a surface recollection.

You might think this is an unscientific thing to do, but I don’t think it is. The scientific process involves an interplay between objective reality and theoretical interpretation and drawing can be a useful part of this discourse. It’s as if the pencil allows the observer to interact with what is observed, forming a closer bond and probably a deeper level of understanding patterns and textures. I’m not saying it replaces a purely passive recording method like photography, but it can definitely help it.

I have not a shred of psychological evidence to back this up, but I’d also assert that sketching is very good for the learning process too.  Nowadays we tend to give out handouts of diagrams involved in physics, whether they relate to the design of apparatus or the geometrical configuration of a physical system. There’s a reason for doing this – they take a long time to draw and there’s a likelihood students will make mistakes copying them down. However, I’ve always  found that the only way to really take in what a diagram is saying is to try to draw it again myself. Even if the level of draftsmanship is worse, the level of understanding is undoubtedly better.Merely looking at someone else’s representation of something won’t give your brain as a good a feeling for what it is trying to say  as you would get if you tried to draw it yourself.

Perhaps what happens is that simply looking at a diagram only involves the connection between eye and brain. Drawing a copy requires also the connection between brain and hand. Maybe  this additional connection brings in additional levels of brain functionality. Sketching iinvolves your brain in an interaction that is different from merely looking.

The problem with excessive use of handouts – and this applies not only to figures  but also to lecture notes – is that they turn teaching into a very passive process. Taking notes in your own hand, and supplementing them with your own sketches – however scribbly and incomprehensible they may appear to other people – is  a much more active way to learn than collecting a stack of printed notes and meticulously accurate diagrams. And if it was good enough for Galileo, it should good enough for most of us!

Scale

Posted in The Universe and Stuff with tags , , , , , on January 31, 2011 by telescoper

A number of people drew my attention to this today. It’s definitely worth passing on to those of you who haven’t seen it already. Have a look at this  blog post too!


Share/Bookmark

Insignificance

Posted in The Universe and Stuff with tags , , , , , , , on January 4, 2011 by telescoper

I’m told that there was a partial eclipse of the Sun visible from the UK this morning, although it was so cloudy here in Cardiff that I wouldn’t have seen anything even if I had bothered to get up in time to observe it. For more details of the event and pictures from people who managed to see it, see here. There’s also a nice article on the BBC website. The BBC are coordinating three days of programmes alongside a host of other events called Stargazing Live presumably timed to coincide with this morning’s eclipse. It’s taking a chance to do live broadcasts about astronomy given the British weather, but I hope they are successful in generating interest especially among the young.

As a spectacle a partial solar eclipse is pretty exciting – as long as it’s not cloudy – but even a full view of one can’t really be compared with the awesome event that is a total eclipse. I’m lucky enough to have observed one and I can tell you it was truly awe-inspiring.

If you think about it, though, it’s a very strange thing that such a thing is possible at all. In a total eclipse, the Moon passes between the Earth and the Sun in such a way that it exactly covers the Solar disk. In order for this to happen the apparent angular size of the Moon (as seen from Earth) has to be almost exactly the same as that of the Sun (as seen from Earth). This involves a strange coincidence: the Moon is small (about 1740 km in radius) but very close to the Earth in astronomical terms (about 400,000 km away). The Sun, on the other hand, is both enormously large (radius 700,000 km) and enormously distant (approx. 150,000,000 km).  The ratio of radius to distance from Earth of these objects is almost identical at the point of a a total eclipse, so the apparent disk of the Moon almost exactly fits over that of the Sun. Why is this so?

The simple answer is that it is just a coincidence. There seems no particular physical reason why the geometry of the Earth-Moon-Sun system should have turned out this way. Moreover, the system is not static. The tides raised by the Moon on the Earth lead to frictional heating and a loss of orbital energy. The Moon’s orbit  is therefore moving slowly outwards from the Earth. I’m not going to tell you exactly how quickly this happens, as it is one of the questions I set my students in the module Astrophysical Concepts I’ll be starting in a few weeks, but eventually the Earth-Moon distance will be too large for total eclipses of the Sun by the Moon to be possible on Earth, although partial and annular eclipses may still be possible.

It seems therefore that we just happen to be living at the right place at the right time to see total eclipses. Perhaps there are other inhabited moonless planets whose inhabitants will never see one. Future inhabitants of Earth will have to content themselves with watching eclipse clips on Youtube.

Things may be more complicated than this though. I’ve heard it argued that the existence of a moon reasonably close to the Earth may have helped the evolution of terrestrial life. The argument – as far as I understand it – is that life presumably began in the oceans, then amphibious forms evolved in tidal margins of some sort wherein conditions favoured both aquatic and land-dwelling creatures. Only then did life fully emerge from the seas and begin to live on land. If it is the case that the existence of significant tides is necessary for life to complete the transition from oceans to solid ground, then maybe the Moon played a key role in the evolution of dinosaurs, mammals, and even ourselves.

I’m not sure I’m convinced of this argument because, although the Moon is the dominant source of the Earth’s tides, it is not overwhelmingly so. The effect of the Sun is also considerable, only a factor of three smaller than the Moon. So maybe the Sun could have done the job on its own. I don’t know.

That’s not really the point of this post, however. What I wanted to comment on is that astronomers basically don’t question the interpretation of the occurence of total eclipses as simply a coincidence. Eclipses just are. There are no doubt many other planets where they aren’t. We’re special in that we live somewhere where something apparently unlikely happens. But this isn’t important because eclipses aren’t really all that significant in cosmic terms, other than that the law of physics allow them.

On the other hand astronomers (and many other people) do make a big deal of the fact that life exists in the Universe. Given what  we know about fundamental physics and biology – which admittedly isn’t very much – this also seems unlikely. Perhaps there are many other worlds without life, so the Earth is special once again. Others argue that the existence of life is so unlikely that special provision must have been made to make it possible.

Before I find myself falling into the black hole marked “Anthropic Principle” let me just say that I don’t see the existence of life (including human life) as being of any greater significance than that of a total eclipse. Both phenomena are (subjectively) interesting to humans, both are contingent on particular circumstances, and both will no doubt cease to occur at some point in perhaps not-too-distant the future. Neither tells us much about the true nature of the Universe.

Let’s face it. We’re just not significant.


Share/Bookmark

The Sketch Process

Posted in Art, Education, The Universe and Stuff with tags , , , , , , , , , on August 25, 2010 by telescoper

It’s pouring with rain so, rather than set off home and get drenched, I thought I’d spend a few minutes on the blog and hope that the deluge dies down before I leave. Knowing my luck it will probably get worse.

Anyway, I thought I’d put together a short item on the theme of sketching. This is quite a strange subject for me to pick because drawing is something I’m completely useless at, but I hope you’ll bear with me and hopefully it will make some sense in the end.

What  spurred me on to think about it was the exhibit I’ve been involved with for the forthcoming Architecture Biennale in Venice as part of a project called Beyond Entropy organized by the Architectural Association School of Architecture. Unfortunately, although I’d originally planned to attend I can’t be there for the opening Symposium, but I hope it turns out to be as successful event as it promises to be!

Anyway, in the course of this project I came across this image of the Moon as drawn by Galileo

This led to an interesting discussion about the role of drawings like this in science. Of course  the use of sketches for the scientific representation of images has been superseded by photographic techniques, initially using film and more recently by digital techniques. The advantage of these methods is that they are quicker and also more “objective”. However, there are still many amateur astronomers who make drawings of the Moon as well as objects such as Jupiter and Saturn (which Galileo also drew). Moreover there are other fields in which experienced practioners continue to use pencil drawings in preference to photographic techniques. Archaeology provides many good examples, e.g.

The reason sketching still has a role in such fields is not that it can compete with photography for accuracy or objectivity but that there’s something about the process of sketching that engages the sketcher’s brain in a  way that’s very different from taking a photograph. The connection between eye, brain and hand seems to involve a cognitive element that is extremely useful in interpreting notes at a later date. In fact it’s probably their very subjectivity that makes them useful.  A thicker stroke of the pencil, or deliberately enhanced shading, or leaving out seemingly irrelevant detail, can help pick out  features that seem to the observer to be of particular significance. Months later when you’re trying to write up what you saw from your notes, those deliberate interventions against objectivity will take you back to what you  saw with your mind, not just with your eyes.

It doesn’t even matter whether or not you can draw well. The point isn’t so much to explain to other people what you’ve seen, but to record your own interaction with the object you’ve sketched in a way that allows you to preserve something more than a surface recollection.

You might think this is an unscientific thing to do, but I don’t think it is. The scientific process involves an interplay between objective reality and theoretical interpretation and drawing can be a useful part of this discourse. It’s as if the pencil allows the observer to interact with what is observed, forming a closer bond and probably a deeper level of understanding patterns and textures. I’m not saying it replaces a purely passive recording method like photography, but it can definitely help it.

I have not a shred of psychological evidence to back this up, but I’d also assert that sketching is very good for the learning process too.  Nowadays we tend to give out handouts of diagrams involved in physics, whether they relate to the design of apparatus or the geometrical configuration of a physical system. There’s a reason for doing this – they take a long time to draw and there’s a likelihood students will make mistakes copying them down. However, I’ve always  found that the only way to really take in what a diagram is saying is to try to draw it again myself. Even if the level of draftsmanship is worse, the level of understanding is undoubtedly better.Merely looking at someone else’s representation of something won’t give your brain as a good a feeling for what it is trying to say  as you would get if you tried to draw it yourself.

Perhaps what happens is that simply looking at a diagram only involves the connection between eye and brain. Drawing a copy requires also the connection between brain and hand. Maybe  this additional connection brings in additional levels of brain functionality. Sketching iinvolves your brain in an interaction that is different from merely looking.

The problem with excessive use of handouts – and this applies not only to figures  but also to lecture notes – is that they turn teaching into a very passive process. Taking notes in your own hand, and supplementing them with your own sketches – however scribbly and incomprehensible they may appear to other people – is  a much more active way to learn than collecting a stack of printed notes and meticulously accurate diagrams. And if it was good enough for Galileo, it should good enough for most of us!

Now it’s stopped raining so I’m off home!


Share/Bookmark

Crater 308

Posted in Art, The Universe and Stuff with tags , , , , , on August 1, 2010 by telescoper

I haven’t got time to post much today – WordPress was down earlier when I had a bit of time and now I’m going to watch the highlights of England’s Test victory against Pakistan in the cricket today, which they achieved by bowling out their opponents for only 80 runs in the second innings.

Nevertheless, as a quick filler, I thought it would be nice to show this wonderful image of the crater Daedalus, formerly known as Crater 308, which is located on the far side of the Moon. Not the dark side, by the way, the far side of the Moon gets just as much sunlight as the near side!
This is one of the images I’ve been working on as part of the project Beyond Entropy for a forthcoming exhibit at the Venice Biennale of Architecture which opens at the end of this month. I won’t say too much about the exhibit I’m involved with, except that it explores the way higher-dimensional information can be recorded in surfaces of lower dimension, like a kind of architectural holographic principle. I was particularly struck by the way the pattern of cratering on the Moon yields information about its formation history, which is why I went looking for dramatic examples. This – taken during the Apollo 11 mission- is my favourite image of all those I’ve looked at. I love the complexy topography, its textural contrasts and the way the shadows play across it.

Daedalus is an impact crater that formed about 3.75 to 3.2 bn years ago. It’s about 93km across. The crater looks relatively fresh; showing sharp-ish-looking rims all around with sequences of wonderfully-preserved terraces down onto a pock-marked, flat floor consisting of numerous craterlets and a central peak divided up into two to three well-defined hills. You can also see the effect of more recent impacts in and around it.

Talking of impact, I wonder if I can get this project into our REF submission?

To Mars or not to Mars?

Posted in Science Politics, The Universe and Stuff with tags , , , , , on April 17, 2010 by telescoper

Amongst  the news this week was President Obama’s announcement of a new space exploration policy for NASA. Out goes the Constellation program, including the Orion crewship, its Ares launch rocket, and the rest of the project’s Moon-bound architecture. Obama says NASA were on an unsustainable path, costing too much money and taking too long to develop. Instead he’s given them extra funds ($6 billion, modest by the standards of space exploration) and told them to find new ways of putting people into space. Obama’s particular goal is to send someone to Mars by the mid 2030s and return them safely to Earth. I think Obama’s plans have ruffled a few feathers, especially among those longing for a return to the Moon, but it seems to me to be both bold and intelligent. 

The European Space Agency also has a programme – called Aurora – which includes components involved with both robotic and human exploration. This programme is a kind of optional extra within the ESA budget and countries that wanted to join in were asked to pay an extra contribution. The UK opted in so now we pay a top-up on our subscription to ESA in order to participate. This will be one of the things that transfers to the new UK Space Agency, when it’s up and running properly, from the Science and Technology Facilities Council (STFC).

Thus far the UK policy has been not to get involved in human space exploration. There are a lot of reasons behind that, but one of the most important is sheer cost. Space exploration is expensive by its very nature, but involving human beings creates enormous extra costs connected with keeping them alive and keeping them safe while they are in space. Since our national expenditure on space exploration has largely been channelled through STFC (or its predecessor PPARC) where it has had to compete for funds with “pure” science activities in the areas of particle physics and astronomy (and, more recently, nuclear physics).

I think the scientific argument against funding human exploration has always been as follows. There aren’t many things that people could do on Mars that a robot couldn’t – here I’m talking just about scientific experiments and the like. Human space exploration is much more expensive than the robotic variety. The scientific value for money is consequently much higher for robotic missions ergo, since money is tight, we don’t do human space exploration. Plus, we couldn’t afford it anyway…

The other factor is that there aren’t many feasible targets for manned spaceflight in the first place. The Moon and Mars are basically it. Other objects in the solar system are either too distant or too inhospitable (or both) to be considered. Unmanned probes haven’t all been successful, but some certainly have paid off enormously in scientific terms. I give the Cassini-Huygens mission to Saturn (and its extraordinary moon Titan) as an example that has turned out, in my opinion, to be nothing short of sensational. The images of Titan’s surface sent back by Huygens were gobsmackingly amazing, for instance.

Before going on let me point out that I’m a cosmologist, not a planetary scientist. There’s a tendency among scientists to think that their own field is more important than the others with which it has to compete for funding. It’s perfectly natural that someone working on galaxy formation should find galaxies more interesting than planets, and vice-versa. We all pick what we want to work on, and obviously we pick what interests us most.  But any scientist worth his/her salt should have enough of a grasp of the big picture to recognize outstanding work in disciplines other than their own.  I don’t want anyone to think that the following comments are intended to suggest that there isn’t excellent work going on in the UK and rest of the world in the field of planetary exploration.

I do think, however, that there is a big difference in character between fundamental science (especially particle physics and cosmology) and planetary exploration. In fundamental physics we are attempting to uncover the nature of basic constituents of the universe and the general laws that govern the structure of matter and how it interacts and evolves – in other words, its scope is (or at least tries to be) universal. It’s certainly this aspect – trying to unravel an enormous cosmic puzzle – that drew me into cosmology. By contrast, the study of a particular planet – even a fascinating one, such as Saturn with all the beautiful orbital dynamics going on in its ring system – lacks this aspect of universality. That’s why cosmology interests me more than planetary exploration does. This is nothing more than a statement of personal interest.

Having said that – and pointing out  again that I’m no particular expert on the Solar System – I don’t find the Moon and Mars very  interesting from a scientific point of view compared with, say,  the outer planets which I find fascinating. Others – a great many others, in fact – obviously do see a lot of interest in Mars. I’m not at all convinced about the scientific merit of some other space probes either, especially the planned Mercury orbiter BepiColombo. But there we are. We can’t all expect to agree on everything. What I’m trying to say, though, is at the moment these different types of activity are funded from the same pot. In order to draw up an order of priority, STFC has to compare apples with oranges with predictably bizarre outcomes.

Moreover, space exploration – especially human space exploration – isn’t just about science. There are definite commercial opporunities in space, in both short and long term.  Space missions often  provide results that are fairly easily accessible to non-scientists, so has considerable popular appeal as well as inspiring young people to take up science and engineering subjects. It has immense cultural impact too, altering the way we think about ourselves and our place in the Universe. But these aren’t unique to space exploration. Particle physics and astronomy do this too.

 But the overriding factor is the politics. When NASA put a man on the Moon 40 years ago, it was never about science – it was a political statement made right at the height of the Cold War. We no longer have a Cold War, but nations still feel the need to show off to each other. It’s called national pride. Politicians know how this works, and how it can turn into votes…

So we shouldn’t think of the plan to put a man on Mars as being primarily a scientific thing anyway. I’m quite comfortable with that.  My worry – if the UK decides to take part in manned Mars exploration – is that the money will come from the already dwindling pot allocated to fundamental science. Particle physics and astronomy research in the UK is on the ropes after the recent devastating cuts. Any more blows like this and we’ll be on the floor. I’m deeply worried that far worse is already on the way – a combination of public spending cuts after the general election and political directives to devote more to space exploration.

The new UK Space Agency could be either a hero or a villain, and I don’t know how it will turn out. On the one hand, the creation of this organization may prevent the fundamental sciences from being squeezed further by expensive space projects. In this way it might represent a recognition of the different characteristics I talked about above. The industrial and commercial aspects of space exploration are present in the new outfit too.  On the other hand, the result of hiving off the “glamorous” space parts of STFC may lead to further cuts in what is left behind. I’m also nervous about the future relationship between UKSA and STFC, especially the extent to which the former can demand research grant funding from the latter.

I’m sorry this has been such a long and rambling post, but this has been on my mind for quite some time and I wanted at last to put something together about it. I could summarise what I’m saying as follows:

  •  I’m not convinced about the scientific case for Mars exploration – particularly if it involves manned missions
  • BUT it’s not my field so it’s not my decision to make
  • AND there’s more to Mars than science anyway
  • SO by all means do it if there’s a will
  • BUT for heavens sake don’t pay for it by killing off the rest of astronomy

This is something that I’d be genuinely interested in hearing other views on. What is stated above is my opinion and is not intended to be representative of anyone, but I’d be very interested in hearing other views through the comments box.

Everyone’s Gone to the Moon

Posted in Uncategorized with tags , , , , on July 16, 2009 by telescoper

Since the media have been banging on about it all week, as have various other bloggers, I suppose I should at least mention that today (16th July 2009) is the fortieth anniversary of the launch of NASA’s  Apollo 11 mission which put the first man on the Moon. I’m reliably informed that the picture on the left shows the second man on the Moon, Buzz Aldrin, although I don’t think the costume gives much clue to the identity of the wearer.

My response to the media furore  is muted because I’m decidedly ambivalent about the whole business of manned space exploration. I’m not going to be churlish and say that all the Apollo missions did was provide America with a much-needed propaganda victory during the Cold War. I think it’s true that putting a man on the Moon was a great achievement in terms of ingenuity and organization. It’s  probably also true that it inspired many people to go into science who otherwise wouldn’t have done so. I’d even say that the sight of Earth from the Moon marked the beginning of a new age of awareness of the fragility of our own existence on our home planet and, perhaps even a step towards our coming-of-age as a species.

The reason I am ambivalent, however, is that the scientific returns from the Apollo missions were entirely negligible, at least in terms of value for money,  partly because the Apollo missions weren’t really designed to do science in the first place and partly because the Moon just isn’t very interesting…

Mankind hasn’t returned to the Moon since the Apollo series came to an end. That’s not a matter for regret, just a reflection of the fact that there isn’t much to be found there. In those forty years  astronomy and space science have moved on immeasurably through spaceborne observatories and unmanned probes. We have learned far more about the Universe  those ways than could ever be achieved by sending a few people to collect rocks from a dull piece of rubble in our backyard. In the process, the Universe has grown in size relative to the scale possible to reach by human engineering projects. The last forty years has shown us that, in retrospect, going to the Moon wasn’t really all that impressive compared to what we can find out by remote means.

Unfortunately there appears to be an increasingly vocal lobby in favour of diverting funds from fundamental science into manned space exploration, much of it aimed at the goal of putting a person on Mars.  This has not yet resulted in a commitment by the United Kingdom government to join in manned space exploration, but it is worrying that the Chief Executive of the Science & Technology Facilities Council is a failed astronaut who I fear sees this as an attractive option. Even more worryingly, Science Minister Lord Drayson seems to be keen too. It’s up to  scientists to present the case to government for maintaining investment in fundamental science and against having the budget plundered to play Star Trek.

The European Space Agency‘s Aurora programme is intended to culminate with a manned trip to Mars, at an overall cost of over £30 billion. One of the arguments I hear over and over again in favour of this programme is that it will inspire young people to take up science, especially physics. Well, maybe. But people can’t become scientists unless they have the opportunity to learn science at School and there is a drastic shortage of physics teachers these days. What’s the point of being inspired if you can’t get the education anyway? You could train an awful  lot of school teachers for  a small fraction of the Aurora budget.  And what’s the point of inspiring people to take up astronomy and space science when you’re also busy slashing the budget for research and ending the careers of those excellent scientists we’ve already got?

So by all means let’s celebrate the marvellous achievements of 1969, but let’s move on and not pretend that there is any good scientific reason for repeating them.