Archive for Paul Steinhardt

Post-Planck Cosmology: Day 3

Posted in The Universe and Stuff with tags , , , , on October 11, 2017 by telescoper

Before carrying on with my daily updates from this meeting on Post-Planck Cosmology I’ll just remark that this is a great venue: it has all the facilities necessary to keep a group of cosmologists happy…


At the tea break this morning I managed to find a shot that included all four of the statues in the main quadrangle too:

This morning kicked off with Roy Maartens discussing the cosmological potential of the Square Kilometre Array and other future galaxy surveys, one of his main points being the benefit of using multiple tracers to beat down some of the problems with single surveys.  The first phase of this project, SKA1,  will deliver 10 million redshifts with z<0.6. With SKA2 that will go up to 1 billion galaxies out to z<2, but many things can be done without redshifts using intensity mapping. SKA1 is some way off, but the precursor `Meerkat' consisting of 64 × 13.5 metre dishes will be hopefully starting next year in South Africa.

We then had a series of talks about reionization and the formation of the first stars, an epoch usually referred to as `Cosmic Dawn' or `First Light', taking us into lunch.

In the afternoon we had talks loosely grouped around the theme of `classical cosmology' – using geometric or other probes to study the expansion history of the Universe. This session included a talk by Chris Messenger of the LIGO collaboration about the beginnings of gravitational wave cosmology, though as the current generation of detectors is only sensitive to relatively nearby sources for the time being the main effort will be devoted to distance scale measurements, attempting to measure the Hubble constant directly without the need for the traditional distance ladder.

The last part of the day was devoted to a panel discussion, chaired by Francois Bouchet that was interesting and wide-ranging but largely motivated by responses to Paul Steinhardt's talk last night.

Now, no conference dinner to tear me away tonight – but I do have to finish my talk, which is at 9am tomorrow – so that will have to do for now. Toodle-pip!

Advertisements

Post-Planck Cosmology: Day 2

Posted in The Universe and Stuff with tags , , on October 10, 2017 by telescoper

Just finished the last session of the day and it’s only half an hour before the conference dinner begins, so I’ll just do a brief summary.

The weather in Pune continues to be `interesting’:

It’s pouring down at the moment, in fact. The session I chaired started late because we had to postpone the conference photograph because of inclement weather.

Anyway, this morning’s talks were primarily about the difficulties of measuring B-mode polarization in the cosmic microwave background. Carlo Baccigalupi gave a perspective on foregrounds from Planck and Zeeshan Ahmed updated us on Keck/BICEP progress. There are no new results from the latter – we’ll have to wait for data from the extra 220 GHz channel – but Zeeshan also spoke about a proposal for the next generation ground-based experiment, glamorously named CMB-S4 – details of which can be found here.

The afternoon was largely devoted to early universe physics, including inflation. We’re only two days in to the conference but already several speakers have showed this plot (from here), which shows the extent to which current cosmological data disfavours various inflationary models:

Some are disfavoured, but clearly there are still lots of viable models! Too many!

For the final session of the day we were joined by Paul Steinhardt via Skype from the USA. He gave a very cogent and stimulating talk arguing that the prevailing paradigm (i.e. inflation) was about to be overturned. I don’t have time to do a full summary of his contribution, but you can check out a previous post about some of the issues he raised, and here’s a picture of the last slide of his presentation:

Anyway, that will have to do. The conference dinner beckons.

Inflationary Perturbation

Posted in The Universe and Stuff with tags , , , , , , on May 11, 2017 by telescoper

I thought I’d just draw the collective attention of my vast readership (Sid and Doris Bonkers) to a bit of a row that has broken out between two groups of cosmologists concerning the theory of cosmic inflation.

This kerfuffle started with an article entitled Pop Goes The Universe in Scientific American by Anna Ijjas, Paul Steinhardt, and Avi Loeb that (among other things) asserts that inflation “cannot be evaluated using the scientific method” and is consequently not a scientific theory. Another group of cosmologists (including Alan Guth, the author of the paper that launched the inflationay universe model) penned a response that was signed by a long list of leading scientists, thirty-three of them to be precise. The original authors then issued a response to the response. Sean Carroll (who was one of those who signed the response the original paper has written a nice blog post summarizing the points of disagreement.

I’m not going to attempt to post a detailed response to every issue raised in this correspondence, but I will make a few points.

First, I think it’s important to realize that there isn’t a single simple definition of `the scientific method’: there are lots of scientific methods, each of which may employed to a greater or lesser degree in different disciplines. Most scientists would probably agree that some notion of `testability’ has to be included if a theory is said to be scientific, but it seems to me that testability is not an absolute, in the sense that not all predictions of a theory need to be observable for the theory as a whole to be testable to a degree. A theory might predict the existence of a phenomenon A that is impossible for all practical purposes to observe, but if that theory also has another necessary consequence B that is observed then the theory does not deserve to be dismissed as unscientific.

One aspect of modern inflationary theory that is singled out for criticism has been the incorporation of the idea of a multiverse. I have to make the confession here that I don’t like the concept of the multiverse, nor do I like the way it has become fashionably mainstream in the field. I’ve never seen it as a necessary (or even useful) addition to inflation theory. However, suppose you have a model of inflation that leads to something like Linde’s version of the multiverse. Causally disconnected domains of this multiverse may indeed not be observable, but if the theory has other necessary implications for things we can observe in our local universe then it is testable to a degree.

My position (such as it is) is that I like the idea of inflation, largely because: (a) it’s very neat; and (b) it provides a simple mechanism for generating fluctuations of the right form to account for so many of the observable properties of our universe, especially the fluctuations we measure in the cosmic microwave background seen by Planck:

These observations don’t prove that inflation is right, nor do they narrow down the field of possible inflationary models very much, but they do seem to be in accord with the predictions of the simplest versions of the theory. Whether that remains true for planned and future observations remains to be seen. Should someone come up with a different theory that matches existing data and can account for something in future data that inflation can’t then I’m sure cosmologists would shift allegiance. The thing is we don’t have such an alternative at the moment. Inflation is the preferred theory, partly for want of compelling alternatives and partly because we need more data to test its predictions.

That said, there are one or two points on which I agree with Ijjas, Steinhardt and Loeb. In particular there has developed what I consider to be a pathological industry dreaming up countless variations of the basic inflation model. There is now a bewildering variety of such models, few of which have any physical motivation whatsoever. I think this is a particularly a grotesque manifestation of the absurd way we measure scientific `success’ in terms of counting publications and how that has driven unhealthy research practice.

No doubt many of you disagree or wish to comment for other reasons either on the original communications or on my comments. Please feel free to offer your thoughts through the box below!

Has BICEP2 bitten the dust?

Posted in The Universe and Stuff with tags , , , , , , , , , , on June 5, 2014 by telescoper

Time for yet another update on twists and turns of the ongoing saga of  BICEP2 and in particular the growing suspicion that the measurements could be accounted for by Galactic dust rather than primordial gravitational waves; see various posts on this blog.

First there is a Nature News and Views article by Paul Steinhardt with the title Big Bang blunder bursts the multiverse bubble. As the title suggests, this piece is pretty scathing about the whole affair, for two main reasons. The first is to do with the manner of the release of the result via a press conference before the results had been subjected to peer review. Steinhardt argues that future announcements of “discoveries” in this area

should be made after submission to journals and vetting by expert referees. If there must be a press conference, hopefully the scientific community and the media will demand that it is accompanied by a complete set of documents, including details of the systematic analysis and sufficient data to enable objective verification.

I also have reservations about the way the communication of this result was handled but I wouldn’t go as far as Steinhardt did. I think it’s quite clear that the BICEP2 team have detected something and that they published their findings in good faith. The fact that the media pushed the result as being a definitive detection of primordial gravitational waves wasn’t entirely their fault; most of the hype was probably down to other cosmologists (especially theorists) who got a bit over-excited.

It is true that if it turns out that the BICEP2 signal is due to dust rather than primordial gravitational waves then the cosmology community will have a certain amount of egg on its face. On the other hand, this is actually what happens in science all the time. If we scientists want the general public to understand better how science actually works we should not pretend that it is about absolute certainties but that it is a process, and because it is a process operated by human beings it is sometimes rather messy. The lesson to be learned is not about hiding the mess from the public but about communicating the uncertainties more accurately and more honestly.

Steinhardt’s other main point is one with which I disagree very strongly. Here is the core of his argument about inflation:

The common view is that it is a highly predictive theory. If that was the case and the detection of gravitational waves was the ‘smoking gun’ proof of inflation, one would think that non-detection means that the theory fails. Such is the nature of normal science. Yet some proponents of inflation who celebrated the BICEP2 announcement already insist that the theory is equally valid whether or not gravitational waves are detected. How is this possible?

The answer given by proponents is alarming: the inflationary paradigm is so flexible that it is immune to experimental and observational tests.

This is extremely disingenuous. There’s a real difference between a theory that is “immune to experimental and observational tests” and one which is just very difficult to test in that way. For a start, the failure of a given experiment to detect gravitational waves  does not prove that gravitational waves don’t exist at some level; a more sensitive experiment might be needed. More generally, the inflationary paradigm is not completely specified as a theory; it is a complex entity which contains a number of free parameters that can be adjusted in the light of empirical data. The same is also true, for example, of the standard model of particle physics. The presence of these adjustable degrees of freedom makes it much harder to test the hypothesis than would be the case if there were no such wiggle room. Normal science often proceeds via the progressive tightening of the theoretical slack until there is no more room for manoeuvre. This process can take some time.

Inflation will probably be very difficult to test, but then there’s no reason why we should expect a definitive theoretical understanding of the very early Universe to come easily to us. Indeed, there is almost certainly a limit to the extent that we can understand the Universe with “normal science” but I don’t think we’ve reached it yet. We need to be more patient. So what if we can’t test inflation with our current technology? That doesn’t mean that the idea is unscientific. It just means that the Universe is playing hard to get.

Steinhardt continues with an argument about the multiverse. He states that inflation

almost inevitably leads to a multiverse with an infinite number of bubbles, in which the cosmic and physical properties vary from bubble to bubble. The part of the multiverse that we observe corresponds to a piece of just one such bubble. Scanning over all possible bubbles in the multi­verse, every­thing that can physically happen does happen an infinite number of times. No experiment can rule out a theory that allows for all possible outcomes. Hence, the paradigm of inflation is unfalsifiable.

This may seem confusing given the hundreds of theoretical papers on the predictions of this or that inflationary model. What these papers typically fail to acknowledge is that they ignore the multiverse and that, even with this unjustified choice, there exists a spectrum of other models which produce all manner of diverse cosmological outcomes. Taking this into account, it is clear that the inflationary paradigm is fundamentally untestable, and hence scientifically meaningless.

I don’t accept the argument that “inflation almost inevitably leads to a multiverse” but even if you do the rest of the argument is false. Infinitely many outcomes may be possible, but are they equally probable? There is a well-defined Bayesian framework within which one could answer this question, with sufficient understanding of the underlying physics. I don’t think we know how to do this yet but that doesn’t mean that it can’t be done in principle.

For similar discussion of this issue see Ted Bunn’s Blog.

Steinhardt’s diatribe was accompanied  yesterday by a sceptical news piece in the Grauniad entitled Gravitational waves turn to dust after claims of flawed analysis. This piece is basically a rehash of the argument that the BICEP2 results may be accounted for by dust rather than primordial gravitational waves, which definitely a possibility, and that the BICEP2 analysis involved a fairly dubious analysis of the foregrounds. In my opinion it’s an unnecessarily aggressive piece, but mentioning it here gives me the excuse to post the following screen grab from the science section of today’s Guardian website:

BICEP_thenandnow

Aficionados of Private Eye will probably think of the Just Fancy That section!

Where do I stand? I can hear you all asking that question so I’ll make it clear that my view hasn’t really changed at all since March. I wouldn’t offer any more than even money on a bet that BICEP2 has detected primordial gravitational waves at all and I’d offer good odds that, if the detection does stand, the value of the tensor-to-scalar ratio is significantly lower than the value of 0.2 claimed by BICEP2.  In other words, I don’t know. Sometimes that’s the only really accurate statement a scientist can make.

Inflationary Opinion Poll

Posted in The Universe and Stuff with tags , , , , , on February 28, 2014 by telescoper

Compare and contrast this abstract of a paper on the arXiv from Guth et al. from last year:

Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk=1−Ω) and the spectral tilt of primordial curvature perturbations (ns−1=dlnPR/dlnk), among others—predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck  as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.

and this one, just out,  by Ijjas et al.:

Classic inflation, the theory described in textbooks, is based on the idea that, beginning from typical initial conditions and assuming a simple inflaton potential with a minimum of fine-tuning, inflation can create exponentially large volumes of space that are generically homogeneous, isotropic and flat, with nearly scale-invariant spectra of density and gravitational wave fluctuations that are adiabatic, Gaussian and have generic predictable properties. In a recent paper, we showed that, in addition to having certain conceptual problems known for decades, classic inflation is for the first time also disfavored by data, specifically the most recent data from WMAP, ACT and Planck2013. Guth, Kaiser and Nomura and Linde have each recently published critiques of our paper, but, as made clear here, we all agree about one thing: the problematic state of classic inflation. Instead, they describe an alternative inflationary paradigm that revises the assumptions and goals of inflation, and perhaps of science generally.

I’m not sure how much of a “schism” (to use Ijjas et al.’s word) there actually is, but it seems like an appropriate subject for a totally unscientific Friday lunchtime opinion poll: