Archive for Physics World.

Hamilton and the “Light-Bulb” Moment

Posted in Biographical, The Universe and Stuff with tags , , , , , , on January 5, 2018 by telescoper

In yesterday’s post I mentioned in passing the bridge (Broom Bridge) beside which William Rowan Hamilton first wrote down the fundamental result of quaternions after having a flash of genius while walking from Dunsink Observatory into Dublin.

That reminded me last night that a while ago I read a piece in Physics World (which you can read here, but only if you have a subscription) about whether breakthroughs in physics occur very often in the way of Hamilton’s – through sudden flashes of inspiration or, as they are called in the article,  “light-bulb moments” –  or are more often the result of solid hard graft, sweat and spadework? In other words, how much is inspiration and how much perspiration?

The piece includes some interesting comments from distinguished scientists about their own “Eureka” moments, which I’m sure will resonate with many researchers, not only physicists. Incidentally, the article refers to such moments as “claritons”, a word I’d never heard before, presumably intended to evoke solitons. It is interestin, though just how strongly the light-bulb has become so strongly associated with this sort of brainwave. You can find a short discussion of this here.

Anyway, I’m pretty sure that  most scientists – even the eminent individuals interviewed for the Physics World piece – have spent a large part of their time “stuck”. I know I have, but then I’m not really eminent anyway. In the long run it’s probably good to go through such periods as I think they’re essential for intellectual development, but they’re undoubtedly extremely frustrating at the time. How you get “unstuck” is a very mysterious process. I’m not a neuroscientist, but it seems to me that when you get really immersed in, say, a research problem, your subconscious brain gets drawn into what you think is a fully conscious process, to the extent that even when you’re apparently not thinking about something you really are. I’ve had ideas come to me in all kinds of weird situations: watching ducks paddling on a pond, listening to music, walking in a park, and even pushing a trolley around a supermarket. Often it seems that it’s precisely when you’re not thinking that you have your best ideas. It’s not always clear what acted as the trigger, but and when it is it is often something quite abstract. In the case I mentioned of the ducks on the pond it was just a question of thinking about reference frames. It was a nudge in the right direction, but I still had to do quite a lot of work to finish the calculation. Come to think of it, it’s usually at that conceptual level that such things happen rather than in the detailed working, at least in my case.

The Physics World piece also talks about ideas coming through dreams. That has happened to me too, but I think it’s basically the same phenomenon that I’ve just discussed. It seems to me that dreams are a product of your brain sorting through recent events or experiences and trying to make sense of them in terms of others it has filed away. This can help with a research problem by flagging up a connection with something else hidden away. I can remember at least two occasions when I’ve woken up from a dream with an exact understanding of what I’d been doing wrong and how I could fix it. It’s great to wake up in the morning with that kind of feeling!

I know it’s wrong to draw inferences about other people from one’s own particular experiences, but I do feel that there are some general lessons. One is that if you are going to be successful at research you have to have a sense of determination that borders on obsession. You have to immerse yourself in it and be prepared to put long hours in. When things are going well you will be so excited that you will find it as hard to stop as it is when you’re struggling. I’m writing as a physicist, but I imagine it is the just same for other disciplines.

The other, equally important, lesson to be learned is that it is essential to do other things as well as doing science. Being “stuck” on a problem is an essential part of mathematics or physics research, but sometimes battering your head against the same thing for days on end just makes it less and less likely you will crack it. The human brain is a wonderful thing, but it can get stuck in a rut. One way to avoid this happening is to have more than one thing to think about.

I’ve lost count of the number of times I’ve been stuck on the last clue in a crossword, which usually means that my facility for thinking laterally, which is so essential for solving cryptic puzzles, is not operating well. What I always do in that situation is put it down and do something else for a bit. It could even be something as trivial as making a cup of tea, just as long as I don’t think about the clue at all while I’m doing it. Nearly always when I come back to it and look at it afresh I can solve it. I have a large stack of prize dictionaries to prove that this works!

It can be difficult to force yourself to pause in this way. I’m sure that I’m not the only physicist who has been unable to sleep for thinking about their research. I do think however that it is essential to learn how to effect your own mental reboot. In the context of my research this involved simply turning to a different research problem, but I think the same purpose can be served in many other ways: taking a break, going for a walk, playing sport, listening to or playing music, reading poetry, doing a crossword, or even just taking time out to socialize with your friends. Time spent sitting at your desk isn’t guaranteed to be productive, and you should never feel guilty about taking a thinking break.

I’d be interested to receive examples of other “light-bulb” moments through the comments box. I’d also welcome comments from neuroscientists on my extremely naïve comments about how the brain works in such situations.

 

Advertisements

Those “Light-Bulb” Moments..

Posted in Biographical, The Universe and Stuff with tags , , , , , on October 11, 2016 by telescoper

Last week I read a piece in the October edition of Physics World (which you can read here, but only if you have a subscription) about whether breakthroughs in physics occur through sudden “light-bulb moments”, or are more often the result of solid hard graft? The piece includes some interesting comments from distinguished scientists about their own “Eureka” moments, which I’m sure will resonate with many researchers, not only physicists. Incidentally, the article refers to such moments as “claritons”, a word I’ve never heard before, presumably a soliton of clarity…

I’m pretty sure that everyone who works in science – even the eminent individuals interviewed for the Physics World piece – has spent a large part of their time “stuck”. I know I have. In the long run it’s probably good to go through such periods as I think they’re essential for intellectual development, but they’re undoubtedly extremely frustrating at the time. How you get “unstuck” is a very mysterious process. I’m not a neuroscientist, but it seems to me that when you get really immersed in, say, a research problem, your subconscious brain gets drawn into what you think is a fully conscious process, to the extent that even when you’re apparently not thinking about something you really are. I’ve had ideas come to me in all kinds of weird situations: watching ducks paddling on a pond, listening to music, walking in a park, and even pushing a trolley around a supermarket. Often it seems that it’s precisely when you’re not thinking that you have your best ideas. It’s not always clear what acted as the trigger, but and when it is it is often something quite abstract. In the case I mentioned of the ducks on the pond it was just a question of thinking about reference frames. It was a nudge in the right direction, but I still had to do quite a lot of work to finish the calculation. Come to think of it, it’s usually at that conceptual level that such things happen rather than in the detailed working, at least in my case.

The Physics World piece also talks about ideas coming through dreams. That has happened to me too, but I think it’s basically the same phenomenon that I’ve just discussed. It seems to me that dreams are a product of your brain sorting through recent events or experiences and trying to make sense of them in terms of others it has filed away. This can help with a research problem by flagging up a connection with something else hidden away. I can remember at least two occasions when I’ve woken up from a dream with an exact understanding of what I’d been doing wrong and how I could fix it. It’s great to wake up in the morning with that kind of feeling!

I know it’s wrong to draw inferences about other people from one’s own particular experiences, but I do feel that there are general lessons. One is that if you are going to be successful at research you have to have a sense of determination that borders on obsession. You have to immerse yourself in it and be prepared to put long hours in. When things are going well you will be so excited that you will find it as hard to stop as it is when you’re struggling. I’m writing as a physicist, but I imagine it is the just same for other disciplines.

The other, equally important, lesson to be learned is that it is essential to do other things as well as doing science. Being “stuck” on a problem is an essential part of mathematics or physics research, but sometimes battering your head against the same thing for days on end just makes it less and less likely you will crack it. The human brain is a wonderful thing, but it can get stuck in a rut. One way to avoid this happening is to have more than one thing to think about.

I’ve lost count of the number of times I’ve been stuck on the last clue in a crossword. What I always do in that situation is put it down and do something else for a bit. It could even be something as trivial as making a cup of tea, just as long as I don’t think about the clue at all while I’m doing it. Nearly always when I come back to it and look at it afresh I can solve it. I have a large stack of prize dictionaries to prove that this works!

It can be difficult to force yourself to pause in this way. I’m sure that I’m not the only physicist who has been unable to sleep for thinking about their research. I do think however that it is essential to learn how to effect your own mental reboot. In the context of my research this involved simply turning to a different research problem, but I think the same purpose can be served in many other ways: taking a break, going for a walk, playing sport, listening to or playing music, reading poetry, doing a crossword, or even just taking time out to socialize with your friends. Time spent sitting at your desk isn’t guaranteed to be productive, and you should never feel guilty about taking a thinking break.

I’d be interested to receive examples of other “light-bulb” moments through the comments box. I’d also welcome comments from neuroscientists on my extremely naïve comments about how the brain works in such situations.

P.S. It’s interesting how the light-bulb has become so strongly associated with the sort of brainwave discussed in this piece. Here’s a short discussion.

 

 

Physics World Plug

Posted in Books, Talks and Reviews, The Universe and Stuff with tags , , , on January 7, 2014 by telescoper

Just time for a quick bit of shameless self-promotion. This month’s Edition of Physics World has an article by me as cover feature. Here’s a sneak preview, but to read the whole thing you’ll have to rush out and buy a copy! Alternatively, you can find it online here.

IMG-20140107-00256

Web Life

Posted in Biographical, Books, Talks and Reviews with tags , , on March 31, 2012 by telescoper

Pure vanity drove me to post this screenshot of a nice write-up of this blog that appears in this month’s Physics World. You can read the whole edition online here if you have a subscription, but if you click on the image it’s more-or-less legible. They’ve written very nice things about In the Dark,  so hope I don’t get into trouble with their copyright enforcers by posting this…

Clover Story

Posted in Science Politics, The Universe and Stuff with tags , , on April 2, 2009 by telescoper

Just a quick note for those interested in the story of Clover, Physics World have run a news item on their website.

You may also like to read the article by Alan Heavens over on the e-astronomer.

Note added on Monday 6th April: the Nature slant on the story is now published online, complete with quote from yours truly…

Another update (9th April). Welsh Newspaper The Western Mail has now run a story on the clover cancellation and there was a short item on the BBC Radio Wales News this evening.

Another update (14th April). A statement from Walter Gear, Principal Investigator of the Clover project, about the current status of Clover has been placed on the Cardiff University School of Physics & Astronomy web pages.

Update: 22nd April 2009. Here is the text of a piece I wrote for today’s Research Fortnight:

An undeserved end

Science projects don’t get much purer than CLOVER, an experiment designed to search for evidence of the existence of primordial gravitational waves by making ultra-sensitive measurements of the polarisation of the cosmic microwave background.

From its vantage point in the Atacama Desert in Chile, CLOVER was intended to probe the state of the universe when it was less than a billionth of a billionth of a second old, to test our understanding of the Big Bang theory. Unfortunately, the Science and Technology Facilities Council says it is cancelling funding for the experiment.

Gravitational waves have been studied theoretically and are known to be intimately related to the structure of space-time itself, the understanding of which is arguably the fundamental goal of modern science. The first discovery of the presence of gravitational waves will lead to the emergence of a brand new area of physics. In anticipation of this new science, the CLOVER team—entirely British, with members in the universities of Cardiff, Cambridge, Oxford and Manchester—has established a technical capability in the UK that is second to none. Cancellation will prevent the team from making direct experimental observations of the universe that would not only have been of immense scientific importance, but could also have had deep cultural significance.

So if CLOVER is so good, why is it being cancelled?

The answer lies in an unfortunate combination of circumstances. CLOVER was initially funded in 2004, with
£4.8 million from the Particle Physics and Astronomy Research Council, one of the forerunners of the STFC. This budget was not sufficient to complete the experiment, for two main reasons. First, the original grant did not include the costs of setting up a site, which was originally to be provided by overseas collaborators in Antarctica. When this option fell through, the cost of the alternative site in Chile (approximately £0.8m) had
to be found. Second, there were delays due to technical challenges, such as the need to develop some of the world’s most sensitive far-infrared superconducting cameras. So, the CLOVER team was unable to complete the project within the original budget, and went back to the STFC to request extra money. This brought a third factor into play.

Since 2007, the research councils, including the STFC, have changed their method of funding university-based research. In the new full-economic-costs regime, costs are substantially higher than at the time of the original award. These elements combined to leave the CLOVER team with a shortfall of about £2.6m, bringing the overall cost to completion to about £7.5m, although the increase in resources required would be only around 20 per cent if calculated on the pre-FEC basis of the initial funding.

Unfortunately, despite receiving strong support from the scientific community and being rated extremely highly in recent prioritisation exercises, the STFC Council has decided that it does not have the funds and has abruptly cancelled the CLOVER experiment.

The background to this decision is one of dire financial circumstances within the research council. Created in 2007, the STFC was set up with insufficient funding to continue all the programmes that it inherited from its predecessors. The deficit (of around £80m) has led to swingeing cuts in research grants over the past year. The pound has also fallen dramatically against the euro, increasing the cost of subscriptions to the European Space Agency, Cern and the European Southern
Observatory. The balance sheet of the STFC is now in total disarray. CLOVER is the first casualty in what may become a large-scale cull of fundamental science projects.

The STFC’s decision on CLOVER means that an important instrument will be lost, and the millions already spent on it wasted. The technology will be difficult to replace. The many gifted scientists who have been working on CLOVER will have to leave the UK to continue in the field, and are unlikely to return. Their fate is unlikely to tempt younger people into a career in science either.

In cancelling CLOVER, the council has effectively closed the door on UK involvement in cosmic microwave background science in general, an area that has already led to two Nobel prizes for physics. The decision also provides worrying evidence that the STFC seems to be turning away from fundamental science towards technology- driven projects. For example the lunar probe Moonlite has recently won funding for initial development studies without ever passing through the rigorous peer review required of CLOVER. If this really is the way the STFC is going, then we may be witnessing the beginning of the end for British astronomy.