*My regular commenter Anton circulated this book review by email yesterday and it stimulated quite a lot of reaction. I haven’t read the book myself, but I thought it would be fun to post his review on here to see whether it provokes similar responses. You can find the book on Amazon here (UK) or here ( USA). If you’re not completely au fait with Bayesian probability and the controversy around it, you might try reading one of my earlier posts about it, e.g. this one. I hope I can persuade some of the email commenters to upload their contributions through the box below!*

-0-

**The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy**

by Sharon Bertsch Mcgrayne

I found reading this book, which is a history of Bayes’ theorem written for the layman, to be deeply frustrating. The author does not really understand what probability IS – which is the key to all cogent writing on the subject. She never mentions the sum and product rules, or that Bayes’ theorem is an easy consequence of them. She notes, correctly, that Bayesian methods or something equivalent to them have been rediscovered advantageously again and again in an amazing variety of practical applications, and says that this is because they are pragmatically better than frequentist sampling theory – ie, she never asks the question: Why do they work better and what deeper rationale explains this? RT Cox is not mentioned. Ed Jaynes is mentioned only in passing as someone whose Bayesian fervour supposedly put people off.

The author is correct that computer applications have catalysed the Bayesian revolution, but in the pages on image processing and other general inverse problems (p218-21) she manages to miss the key work through the 1980s of Steve Gull and John Skilling, and you will not find “Maximum entropy” in the index. She does get the key role of Markov Chain Monte Carlo methods in computer implementation of Bayesian methods, however. But I can’t find Dave Mackay either, who deserves to be in the relevant section about modern applications.

On the other hand, as a historian of Bayesianism from Bayes himself to about 1960, she is full of superb anecdotes and information about

people who are to us merely names on the top of papers, or whose personalities are mentioned tantalisingly briefly in Jaynes’ writing.

For this material alone I recommend the book to Bayesians of our sort and am glad that I bought it.