Archive for Sally Clark

Bayes in the dock (again)

Posted in Bad Statistics with tags , , , , , on February 28, 2013 by telescoper

This morning on Twitter there appeared a link to a blog post reporting that the Court of Appeal had rejected the use of Bayesian probability in legal cases. I recommend anyone interested in probability to read it, as it gives a fascinating insight into how poorly the concept is understood.

Although this is a new report about a new case, it’s actually not an entirely new conclusion. I blogged about a similar case a couple of years ago, in fact. The earlier story n concerned an erroneous argument given during a trial about the significance of a match found between a footprint found at a crime scene and footwear belonging to a suspect.  The judge took exception to the fact that the figures being used were not known sufficiently accurately to make a reliable assessment, and thus decided that Bayes’ theorem shouldn’t be used in court unless the data involved in its application were “firm”.

If you read the Guardian article to which I’ve provided a link you will see that there’s a lot of reaction from the legal establishment and statisticians about this, focussing on the forensic use of probabilistic reasoning. This all reminds me of the tragedy of the Sally Clark case and what a disgrace it is that nothing has been done since then to improve the misrepresentation of statistical arguments in trials. Some of my Bayesian colleagues have expressed dismay at the judge’s opinion.

My reaction to this affair is more muted than you would probably expect. First thing to say is that this is really not an issue relating to the Bayesian versus frequentist debate at all. It’s about a straightforward application of Bayes’ theorem which, as its name suggests, is a theorem; actually it’s just a straightforward consequence of the sum and product laws of the calculus of probabilities. No-one, not even the most die-hard frequentist, would argue that Bayes’ theorem is false. What happened in this case is that an “expert” applied Bayes’ theorem to unreliable data and by so doing obtained misleading results. The  issue is not Bayes’ theorem per se, but the application of it to inaccurate data. Garbage in, garbage out. There’s no place for garbage in the courtroom, so in my opinion the judge was quite right to throw this particular argument out.

But while I’m on the subject of using Bayesian logic in the courts, let me add a few wider comments. First, I think that Bayesian reasoning provides a rigorous mathematical foundation for the process of assessing quantitatively the extent to which evidence supports a given theory or interpretation. As such it describes accurately how scientific investigations proceed by updating probabilities in the light of new data. It also describes how a criminal investigation works too.

What Bayesian inference is not good at is achieving closure in the form of a definite verdict. There are two sides to this. One is that the maxim “innocent until proven guilty” cannot be incorporated in Bayesian reasoning. If one assigns a zero prior probability of guilt then no amount of evidence will be able to change this into a non-zero posterior probability; the required burden is infinite. On the other hand, there is the problem that the jury must decide guilt in a criminal trial “beyond reasonable doubt”. But how much doubt is reasonable, exactly? And will a jury understand a probabilistic argument anyway?

In pure science we never really need to achieve this kind of closure, collapsing the broad range of probability into a simple “true” or “false”, because this is a process of continual investigation. It’s a reasonable inference, for example, based on Supernovae and other observations that the Universe is accelerating. But is it proven that this is so? I’d say “no”,  and don’t think my doubts are at all unreasonable…

So what I’d say is that while statistical arguments are extremely important for investigating crimes – narrowing down the field of suspects, assessing the reliability of evidence, establishing lines of inquiry, and so on – I don’t think they should ever play a central role once the case has been brought to court unless there’s much clearer guidance given to juries and stricter monitoring of so-called “expert” witnesses.

I’m sure various readers will wish to express diverse opinions on this case so, as usual, please feel free to contribute through the box below!

Bayes in the Dock

Posted in Bad Statistics with tags , , , , on October 6, 2011 by telescoper

A few days ago John Peacock sent me a link to an interesting story about the use of Bayes’ theorem in legal proceedings and I’ve been meaning to post about it but haven’t had the time. I get the distinct feeling that John, who is of the frequentist persuasion,  feels a certain amount of delight that the beastly Bayesians have got their comeuppance at last.

The story in question concerns an erroneous argument given during a trial about the significance of a match found between a footprint found at a crime scene and footwear belonging to a suspect.  The judge took exception to the fact that the figures being used were not known sufficiently accurately to make a reliable assessment, and thus decided that Bayes’ theorem shouldn’t be used in court unless the data involved in its application were “firm”.

If you read the Guardian article you will see that there’s a lot of reaction from the legal establishment and statisticians about this, focussing on the forensic use of probabilistic reasoning. This all reminds me of the tragedy of the Sally Clark case and what a disgrace it is that nothing has been done since then to improve the misrepresentation of statistical arguments in trials. Some of my Bayesian colleagues have expressed dismay at the judge’s opinion, which no doubt pleases Professor Peacock no end.

My reaction to this affair is more muted than you would probably expect. First thing to say is that this is really not an issue relating to the Bayesian versus frequentist debate at all. It’s about a straightforward application of Bayes’ theorem which, as its name suggests, is a theorem; actually it’s just a straightforward consequence of the sum and product laws of the calculus of probabilities. No-one, not even the most die-hard frequentist, would argue that Bayes’ theorem is false. What happened in this case is that an “expert” applied Bayes’ theorem to unreliable data and by so doing obtained misleading results. The  issue is not Bayes’ theorem per se, but the application of it to inaccurate data. Garbage in, garbage out. There’s no place for garbage in the courtroom, so in my opinion the judge was quite right to throw this particular argument out.

But while I’m on the subject of using Bayesian logic in the courts, let me add a few wider comments. First, I think that Bayesian reasoning provides a rigorous mathematical foundation for the process of assessing quantitatively the extent to which evidence supports a given theory or interpretation. As such it describes accurately how scientific investigations proceed by updating probabilities in the light of new data. It also describes how a criminal investigation works too.

What Bayesian inference is not good at is achieving closure in the form of a definite verdict. There are two sides to this. One is that the maxim “innocent until proven guilty” cannot be incorporated in Bayesian reasoning. If one assigns a zero prior probability of guilt then no amount of evidence will be able to change this into a non-zero posterior probability; the required burden is infinite. On the other hand, there is the problem that the jury must decide guilt in a criminal trial “beyond reasonable doubt”. But how much doubt is reasonable, exactly? And will a jury understand a probabilistic argument anyway?

In pure science we never really need to achieve this kind of closure, collapsing the broad range of probability into a simple “true” or “false”, because this is a process of continual investigation. It’s a reasonable inference, for example, based on Supernovae and other observations that the Universe is accelerating. But is it proven that this is so? I’d say “no”,  and don’t think my doubts are at all unreasonable…

So what I’d say is that while statistical arguments are extremely important for investigating crimes – narrowing down the field of suspects, assessing the reliability of evidence, establishing lines of inquiry, and so on – I don’t think they should ever play a central role once the case has been brought to court unless there’s much clearer guidance given to juries on how to use it and stricter monitoring of so-called “expert” witnesses.

I’m sure various readers will wish to express diverse opinions on this case so, as usual, please feel free to contribute through the box below!

DNA Profiling and the Prosecutor’s Fallacy

Posted in Bad Statistics with tags , , , , , , on October 23, 2010 by telescoper

It’s been a while since I posed anything in the Bad Statistics file so I thought I’d return to the subject of one of my very first blog posts, although I’ll take a different tack this time and introduce it with different, though related, example.

The topic is forensic statistics, which has been involved in some high-profile cases and which demonstrates how careful probabilistic reasoning is needed to understand scientific evidence. A good example is the use of DNA profiling evidence. Typically, this involves the comparison of two samples: one from an unknown source (evidence, such as blood or semen, collected at the scene of a crime) and a known or reference sample, such as a blood or saliva sample from a suspect. If the DNA profiles obtained from the two samples are indistinguishable then they are said to “match” and this evidence can be used in court as indicating that the suspect was in fact the origin of the sample.

In courtroom dramas, DNA matches are usually presented as being very definitive. In fact, the strength of the evidence varies very widely depending on the circumstances. If the DNA profile of the suspect or evidence consists of a combination of traits that is very rare in the population at large then the evidence can be very strong that the suspect was the contributor. If the DNA profile is not so rare then it becomes more likely that both samples match simply by chance. This probabilistic aspect makes it very important to understand the logic of the argument very carefully.

So how does it all work? A DNA profile is not a complete map of the entire genetic code contained within the cells of an individual, which would be such an enormous amount of information that it would be impractical to use it in court. Instead, a profile consists of a few (perhaps half-a-dozen) pieces of this information called alleles. An allele is one of the possible codings of DNA of the same gene at a given position (or locus) on one of the chromosomes in a cell. A single gene may, for example, determine the colour of the blossom produced by a flower; more often genes act in concert with other genes to determine the physical properties of an organism. The overall physical appearance of an individual organism, i.e. any of its particular traits, is called the phenotype and it is controlled, at least to some extent, by the set of alleles that the individual possesses. In the simplest cases, however, a single gene controls a given attribute. The gene that controls the colour of a flower will have different versions: one might produce blue flowers, another red, and so on. These different versions of a given gene are called alleles.

Some organisms contain two copies of each gene; these are said to be diploid. These copies can either be both the same, in which case the organism is homozygous, or different in which case it is heterozygous; in the latter case it possesses two different alleles for the same gene. Phenotypes for a given allele may be either dominant or recessive (although not all are characterized in this way). For example, suppose the dominated and recessive alleles are called A and a, respectively. If a phenotype is dominant then the presence of one associated allele in the pair is sufficient for the associated trait to be displayed, i.e. AA, aA and Aa will both show the same phenotype. If it is recessive, both alleles must be of the type associated with that phenotype so only aa will lead to the corresponding traits being visible.

Now we get to the probabilistic aspect of this. Suppose we want to know what the frequency of an allele is in the population, which translates into the probability that it is selected when a random individual is extracted. The argument that is needed is essentially statistical. During reproduction, the offspring assemble their alleles from those of their parents. Suppose that the alleles for any given individual are chosen independently. If p is the frequency of the dominant gene and q is the frequency of the recessive one, then we can immediately write:

p+q =1

Using the product law for probabilities, and assuming independence, the probability of homozygous dominant pairing (i.e. AA) is p2, while that of the pairing aa is q2. The probability of the heterozygotic outcome is 2pq (the two possibilities, each of probability pq are Aa and aA). This leads to the result that

p^2 +2pq +q^2 =1

This called the Hardy-Weinberg law. It can easily be extended to cases where there are two or more alleles, but I won’t go through the details here.

Now what we have to do is examine the DNA of a particular individual and see how it compares with what is known about the population. Suppose we take one locus to start with, and the individual turns out to be homozygotic: the two alleles at that locus are the same. In the population at large the frequency of that allele might be, say, 0.6. The probability that this combination arises “by chance” is therefore 0.6 times 0.6, or 0.36. Now move to the next locus, where the individual profile has two different alleles. The frequency of one is 0.25 and that of the other is 0.75. so the probability of the combination is “2pq”, which is 0.375. The probability of a match at both these loci is therefore 0.36 times 0.375, or 13.5%. The addition of further loci gradually refines the profile, so the corresponding probability reduces.

This is a perfectly bona fide statistical argument, provided the assumptions made about population genetic are correct. Let us suppose that a profile of 7 loci – a typical number for the kind of profiling used in the courts – leads to a probability of one in ten thousand of a match for a “randomly selected” individual. Now suppose the profile of our suspect matches that of the sample left at the crime scene. This means that, either the suspect left the trace there, or an unlikely coincidence happened: that, by a 1:10,000 chance, our suspect just happened to match the evidence.

This kind of result is often quoted in the newspapers as meaning that there is only a 1 in 10,000 chance that someone other than the suspect contributed the sample or, in other words, that the odds against the suspect being innocent are ten thousand to one against. Such statements are gross misrepresentations of the logic, but they have become so commonplace that they have acquired their own name: the Prosecutor’s Fallacy.

To see why this is a fallacy, i.e. why it is wrong, imagine that whatever crime we are talking about took place in a big city with 1,000,000 inhabitants. How many people in this city would have DNA that matches the profile? Answer: about 1 in 10,000 of them ,which comes to 100. Our suspect is one. In the absence of any other information, the odds are therefore roughly 100:1 against him being guilty rather than 10,000:1 in favour. In realistic cases there will of course be additional evidence that excludes the other 99 potential suspects, so it is incorrect to claim that a DNA match actually provides evidence of innocence. This converse argument has been dubbed the Defence Fallacy, but nevertheless it shows that statements about probability need to be phrased very carefully if they are to be understood properly.

All this brings me to the tragedy that I blogged about in 2008. In 1999, Mrs Sally Clark was tried and convicted for the murder of her two sons Christopher, who died aged 10 weeks in 1996, and Harry who was only eight weeks old when he died in 1998. Sudden infant deaths are sadly not as uncommon as one might have hoped: about one in eight thousand families experience such a nightmare. But what was unusual in this case was that after the second death in Mrs Clark’s family, the distinguished paediatrician Sir Roy Meadows was asked by the police to investigate the circumstances surrounding both her losses. Based on his report, Sally Clark was put on trial for murder. Sir Roy was called as an expert witness. Largely because of his testimony, Mrs Clark was convicted and sentenced to prison.

After much campaigning, she was released by the Court of Appeal in 2003. She was innocent all along. On top of the loss of her sons, the courts had deprived her of her liberty for four years. Sally Clark died in 2007 from alcohol poisoning, after having apparently taken to the bottle after three years of wrongful imprisonment.The whole episode was a tragedy and a disgrace to the legal profession.

I am not going to imply that Sir Roy Meadows bears sole responsibility for this fiasco, because there were many difficulties in Mrs Clark’s trial. One of the main issues raised on Appeal was that the pathologist working with the prosecution had failed to disclose evidence that Harry was suffering from an infection at the time he died. Nevertheless, what Professor Meadows said on oath was so shockingly stupid that he fully deserves the vilification with which he was greeted after the trial. Two other women had also been imprisoned in similar circumstances, as a result of his intervention.

At the core of the prosecution’s case was a probabilistic argument that would have been torn to shreds had any competent statistician been called to the witness box. Sadly, the defence counsel seemed to believe it as much as the jury did, and it was never rebutted. Sir Roy stated, correctly, that the odds of a baby dying of sudden infant death syndrome (or “cot death”) in an affluent, non-smoking family like Sally Clarks, were about 8,543 to one against. He then presented the probability of this happening twice in a family as being this number squared, or 73 million to one against. In the minds of the jury this became the odds against Mrs Clark being innocent of a crime.

That this argument was not effectively challenged at the trial is truly staggering.

Remember that the product rule for combining probabilities

P(AB)=P(A)P(B|A)

only reduces to

P(AB)=P(A)P(B)

if the two events A and B are independent, i.e. that the occurrence of one event has no effect on the probability of the other. Nobody knows for sure what causes cot deaths, but there is every reason to believe that there might be inherited or environmental factors that might cause such deaths to be more frequent in some families than in others. In other words, sudden infant deaths might be correlated rather than independent. Furthermore, there is data about the frequency of multiple infant deaths in families. The conditional frequency of a second such event following an earlier one is not one in eight thousand or so, it’s just one in 77. This is hard evidence that should have been presented to the jury. It wasn’t.

Note that this testimony counts as doubly-bad statistics. It not only deploys the Prosecutor’s Fallacy, but applies it to what was an incorrect calculation in the first place!

Defending himself, Professor Meadows tried to explain that he hadn’t really understood the statistical argument he was presenting, but was merely repeating for the benefit of the court something he had read, which turned out to have been in a report that had not been even published at the time of the trial. He said

To me it was like I was quoting from a radiologist’s report or a piece of pathology. I was quoting the statistics, I wasn’t pretending to be a statistician.

I always thought that expert witnesses were suppose to testify about those things that they were experts about, rather than subjecting the jury second-hand flummery. Perhaps expert witnesses enjoy their status so much that they feel they can’t make mistakes about anything.

Subsequent to Mrs Clark’s release, Sir Roy Meadows was summoned to appear in front of a disciplinary tribunal at the General Medical Council. At the end of the hearing he was found guilty of serious professional misconduct, and struck off the medical register. Since he is retired anyway, this seems to me to be scant punishment. The judges and barristers who should have been alert to this miscarriage of justice have escaped censure altogether.

Although I am pleased that Professor Meadows has been disciplined in this fashion, I also hope that the General Medical Council does not think that hanging one individual out to dry will solve this problem. I addition, I think the politicians and legal system should look very hard at what went wrong in this case (and others of its type) to see how the probabilistic arguments that are essential in the days of forensic science can be properly incorporated in a rational system of justice. At the moment there is no agreed protocol for evaluating scientific evidence before it is presented to court. It is likely that such a body might have prevented the case of Mrs Clark from ever coming to trial. Scientists frequently seek the opinions of lawyers when they need to, but lawyers seem happy to handle scientific arguments themselves even when they don’t understand them at all.

I end with a quote from a press release produced by the Royal Statistical Society in the aftermath of this case:

Although many scientists have some familiarity with statistical methods, statistics remains a specialised area. The Society urges the Courts to ensure that statistical evidence is presented only by appropriately qualified statistical experts, as would be the case for any other form of expert evidence.

As far as I know, the criminal justice system has yet to implement such safeguards.


Share/Bookmark

The Curious Case of the Inexpert Witness

Posted in Bad Statistics with tags , , , on September 17, 2008 by telescoper

Although I am a cosmologist by trade, I am also interested in the fields of statistics and probability theory. I guess this derives from the fact that a lot of research in cosmology depends on inferences drawn from large data sets. By its very nature this process is limited by the fact that the information obtained in such studies is never complete. The analysis of systems based on noisy or incomplete data is exactly what probability is about.

Of course, statistics has much wider applications than in pure science and there are times when it is at the heart of controversies that explode into the public domain, particularly when involved in medicine or jurisprudence. One of the reasons why I wrote my book From Cosmos to Chaos was a sense of exasperation at how poorly probability theory is understood even by people who really should know better. Although statistical reasoning is at the heart of a great deal of research in physics and astronomy, there are many prominent practioners who don’t really know what they are talking about when they discuss probability. As I soon discovered when I started thinking about writing the book, the situation is even worse in other fields. I thought it might be fun to post a few examples of bad statistics from time to time, so I’ll start with this, which is accompanied by a powerpoint file of a lunchtime talk I gave at Cardiff.

I don’t have time to relate the entire story of Sally Clark and the monstrous miscarriage of justice she endured after the deaths of her two children. The wikipedia article I have linked to is pretty accurate, so I’ll refer you there for the details. In a nutshell, in 1999 she was convicted of the murder of her two children on the basis of some dubious forensic evidence and the expert testimony of a prominent paediatrician, Sir Roy Meadow. After appeal her convinction was quashed in 2003, but she died in 2007 from alcohol poisoning having apparently taken to the bottle after three years of wrongful imprisonment.

Professor Meadow had a distinguished (if somewhat controversial) career, becoming famous for a paper on Munchausen’s Syndrome by Proxy which appeared in the Lancet in 1977. He subsequently appeared as an expert witness in many trials of parents accused of murdering their children. In the Sally Clark case he was called as a witness for the prosecution, where his testimony included an entirely bogus and now infamous argument about the probability of two sudden infant deaths happening accidentally in the same family.

The argument is basically the following. The observed ratio of live births to cot deaths in affluent non-smoking families (like Sally Clark’s) is about 8,500:1. This means that about 1 in 8,500 children born to such families die in such a way. He then argued that the probability that two such tragedies happen in the same family is this number squared, i.e. about 73,000,000:1. In the mind of the jury this became the odds against the death of Mrs Clark’s children being accidental and therefore presumably the odds against her being innocent. The jury found her guilty.

For reasons why this argument is completely bogus, and more technical details, look in the following powerpoint file (which involves a bit of maths):

the-inexpert-witness

It is difficult to assess how important Roy Meadow’s testimony was in the collective mind of the Jury, but it was certainly erroneous and misleading. The General Medical Council decided that he should be struck off the medical register in July 2005 on the grounds of “serious professional misconduct”. He appealed, and the decision was partly overturned in 2006, the latest judgement basically being about what level of professional misconduct should be termed “serious”.

My reaction to all this is a mixture of anger and frustration. First of all, the argument presented by Meadow is so clearly wrong that any competent statistician could have been called as a witness to rebut it. The defence were remiss in not doing so. Second, the disciplinary action taken by the GMC seemed to take no account of the consequences his testimony had for Sally Clark. He was never even at risk of prosecution or financial penalty. Sally Clark spent three years of her life in prison, on top of having lost her children, and now is herself dead. Finally, expert testimony is clearly important in many trials, but experts should testify only on those matters that they are experts about! Meadow even admitted later that he didn’t really understand statistics. So why did he include this argument in his testimony? I quote from a press release produced by the Royal Statistical Society in the aftermath of this case:

Although many scientists have some familiarity with statistical methods, statistics remains a specialised area. The Society urges the Courts to ensure that statistical evidence is presented only by appropriately qualified statistical experts, as would be the case for any other form of expert evidence.

As far as I know, the criminal justice system has yet to implement such safeguards.

How many more cases like this need to happen before the Courts recognise the dangers of bad statistics?


Follow

Get every new post delivered to your Inbox.

Join 3,284 other followers