Archive for STFC

Thinking of Applying for a PhD Place in Physics or Astronomy?

Posted in Education with tags , , , , , , on October 12, 2016 by telescoper

This morning I am to give a short talk to interested students within the School of Physics & Astronomy here at Cardiff University about postgraduate research in which I aim to pass on some, hopefully useful,  information about how to go about applying for PhDs  in Physics  and Astronomy. Since I’ve finished writing the talk more than the usual few minutes before I have to deliver it, I thought I’d jot down here a few general remarks that might be useful to people elsewhere who are thinking of taking the plunge when they graduate. I’m aiming this primarily at UK students applying for places in the UK; special considerations apply for students wanting to do graduate research abroad.

What is a PhD? The answer to that is relatively easy; it’s a postgraduate research degree. In order to obtain a PhD you have to present a thesis like that shown on the left (which happens to be mine, vintage 1988), typically in the range 100-250  pages long. A thesis has to satisfy two conditions for the award of the degree: it should contain original research, which is publishable in an academic journal; and it should present a coherent discussion of that original work within the context of ongoing work in the area of study. In Physics & Astronomy, the PhD is pretty much a prerequisite for any career in academic research, and it usually takes between 3 and 4 years to complete. After submission of the thesis you will have to undergo a viva voce examination conducted by two examiners, one internal and one external. This is quite a tough test, which  can last anywhere between about 2 and about 6 hours, during which you can be asked  detailed questions about your research and wide-ranging questions about the general area.

The Money Side. In the UK most PhDs are supported financially by the research councils, either EPSRC (most physics) or STFC (nuclear & particle physics, astronomy). These generally award quotas of studentships to departments who distribute them to students they admit. A studentship will cover your fees and pay a stipend, currently £14296 pa. That doesn’t sound like a lot, but you should at least remember that it is a stipend rather than a wage; it is therefore not taxed and there is no national insurance payable. There is a fee (currently £4121) payable for a PhD course, but that only comes into play if you are planning to fund yourself. If you receive a studentship it will normally cover the fee as an additional component. What I mean by that is you don’t need to pay it out of the stipend, it is separate. In top of that, research council funding also supplies a Research Training Grant which covers, e.g., travel and small items of equipment so you don’t need to pay for those out of your stipend either.

How do I choose a PhD? During the course of a postgraduate degree you are expected to become an expert in the area in which you specialize. In particular you should reach the point where you know more about that specific topic than your supervisor does. You will therefore have to work quite a lot on your own, which means you need determination, stamina and enthusiasm. In my view the most important criterion in your choice of PhD is not the institution where you might study but the project. You need to be genuinely excited by the topic in order to drive yourself to keep through the frustrations (of which there will be many). So, find an area that interests you and find the departments that do active research in that area by looking on the web. Check out the recent publications by staff in each department, to ensure that they are active and to have something to talk about at interview!

Qualifications. Most universities have a formal requirement that candidates for admission to the PhD should have a “good honours degree”, which basically means at least an Upper Second Class Honours degree. Some areas are more competitive than others, however, and in many disciplines you will find you are competing with a great many applicants with First Class degrees.

How to apply successfully. The application procedure at most universities is quite simple and can be done online. You will need to say something about the area in which you wish to do research (e.g. experiment/theory, and particular field, e.g. cosmology or star formation). You’ll also need a CV and a couple of references. Given the competition, it’s essential that you prepare. Give your curriculum vitae some attention, and get other people (e.g. your personal tutor) to help you improve it. It’s worth emphasizing particular skills (e.g. computing). If you get the chance, make use of your summer vacations by taking on an internship or other opportunity to get a taste of research; things like that will undoubtedly give your CV an edge.

The Interview. Good applicants will be invited for an interview, which is primarily to assess whether you have the necessary skills and determination, but also to match applicants to projects and supervisors. Prepare for your interview! You will almost certainly be asked to talk about your final-year project, so it will come across very badly if you’re not ready when they ask you. Most importantly, mug up about your chosen field. You will look really silly if you haven’t the vaguest idea of what’s going on in the area you claimed to be interested in when you wrote your  application!

Don’t be shy! There’s nothing at all wrong with being pro-active about this process. Contact academic staff at other universities by email and ask them about research, PhD opportunities. That will make a good impression. Also, don’t be afraid to ask for advice. Although we’re all keen to recruit good PhD students for our own departments, we academics are  conscious that it is also our job to give impartial advice. Ask your tutor’s opinion.

How many places should I apply for? Some research areas are more fashionable than others so the level of competition varies with field. As a general rule I would advise applying for about half-a-dozen places, chosen because they offer research in the right area. Apply to fewer than that and you might lose out to the competition. Apply to many more and you might not have time to attend the interviews.

What’s the timetable?  Most applications come in early in the new year for entry to the PhD in the following September/October. The Christmas break is therefore a pretty good time to get your applications sorted out. Interviews are normally held in February or March, and decisions made by late March. STFC runs a deadline system whereby departments can not force students to accept or decline offers before the end of March, so there should be ample time to visit all your prospective departments before having to make any decisions.

That’s all I can think of for now. I hope at least some of these comments are useful to undergraduates anywhere in the UK thinking of applying for a PhD. If there are any further questions, please feel free to ask through the comments box. Likewise if I’ve missed anything important, please feel free to suggest additions in the same manner…

The Supreme Leader of STFC Departs…

Posted in Science Politics with tags , , on May 12, 2016 by telescoper


In case you haven’t heard yet, news has just broken that Professor John Womersley (above), currently Chief Executive of the Science & Technology Facilities Council (STFC), has been appointed Director-General of the new European Spallation Source (ESS) in Lund, Sweden, and will therefore be stepping down from his post as Chief Executive of STFC in the autumn.

John has been Supreme Leader at STFC for five years now and, in my opinion, has done an excellent job in circumstances that have not always been easy. He will be a hard act to follow. I know he’s an occasional reader of this blog, so let me take this opportunity to wish him well in his new role.

Now, perhaps I should open a book on the likely contenders for the post of next Chief Executive of STFC?


Why EU funding is so important for UK science

Posted in Politics, Science Politics, Uncategorized with tags , , , , , , , on April 12, 2016 by telescoper

One of the figures bandied about by the Leave campaign and in particular by the strangely litigious group  that calls itself “Scientists for Britain” (which has only six members that I know of, not all of them scientists) is that the EU is not important for British science because it only funded 3% of UK R&D between 2007 and 2013). They’ve even supplied a helpful graphic:


The figures are taken from a Royal Society report and are, as far as I’m aware, accurate. It’s worth noting however that the level of funding  under the FP7 “Framework Programme” which funds research is much smaller than the current Horizon2020 programme.

However, as Stephen Curry has pointed out in a typically balanced and reasonable blog post, the impact of a BrExit on UK science is much more complex than this picture would suggest. I want to add just a few  points from my specific perspective as a university-based researcher.

First, the 3% figure is arrived at by a tried-and-tested technique of finding the smallest possible numerator and dividing it by the lowest possible denominator. A fairer comparison, in my view, would just look at research funded by the taxpayer (either directly from the UK or via the EU). For one thing we don’t know how much of the research funded by businesses in the UK is funded by businesses which are only here in the UK because we’re part of the European Union. For another these figures are taken over the whole R&D effort and they hide huge differences from discipline to discipline.

From my perspective as an astrophysicist – and this is true of many researchers in “blue skies” areas – most of the pie chart is simply not relevant. The main sources of funding that we can attempt to tap are the UK Research Councils (chiefly STFC and EPSRC) and EU programmes; we also get a small amount of research income from charities, chiefly the Leverhulme Trust. The situation is different in other fields: medical research, for example, has much greater access to charitable funding.

As it happens I’ve just received the monthly research report of the School of Mathematical and Physics Sciences at the University of Sussex (of which I am currently Head) and I can tell you the EU counts not for 3% of our  income but 21% (which is in line with the proportions) above; most of that comes from the European Research Council. The possibility of losing access to EU funding  alarms me greatly as it would mean the loss of about one-fifth of our research base. I know that figure is much higher in some other institutions and departments.

But it’s not just the money that’s important, it’s also the kind of programmes that the EU funds. These are often to do with mobility of researchers, especially those early in their careers (including PhD students), grants that allow us to exploit facilities that we would otherwise not be able to access, and those that sustain large collaborations. It’s not just the level of cash that matters but the fact that what it funds is nicely complementary to the UK’s own programmes. The combination of UK and EU actually provides a much better form of “dual funding” than the UK can achieve on its own.

Some say that BrExit would not change our access to EU funding, but I maintain there’s a huge risk that this will be the case. The loss of the UK’s input into the overall EU budget will almost certainly lead to a revision of the ability of non-member states to access these programmes. The best that even BrExit campaigners argue for is that access to EU funding will not change. There is therefore, from a science perspective, there is no chance of a gain and a large risk of a loss. For me, that kind of a decision is a no-brainer. I’m not the only one who thinks that either: 150 Fellows of the Royal Society agree with me, as do the vast majority of scientists surveyed in a poll conducted by Nature magazine.

Of course there will be some who will argue that this “blue skies” academic research in universities isn’t important and we should be spending more money on stuff that leads to wealth creation. I can think of many arguments against that, but for the purposes of this post I’ll just remind you that 45% of UK research is done in industry and commercial businesses of various kinds. Where do you think the supply of science graduates come from, what kind of research draws students into science courses in the first place, and where do the teachers come from that educate the next generations?

As a scientist who cares passionately about the sustainability of Britain’s research base, I think we should definitely remain in the European Union.

Big Cuts to UK Science Research

Posted in Science Politics with tags , , , on March 4, 2016 by telescoper

I have been off sick today, but felt a whole lot sicker when I saw that the government had unveiled its plans for UK research spending over the next few years.

At first sight the picture looks encouraging. For example, the Science and Technology Facilities Council (STFC) sees a modest increase on cash terms from 16/17 to the end of the budget period. However that picture soon changes when you note that the allocation to STFC this year (15/16) was £400M. The allocation for (16/17) is £388M, so there’s an immediate reduction of £12M in available resource corresponding to a 3% cash cut.

This is  a truly terrible result for the STFC community. It may not seem like a big cut, but so much of the STFC budget is locked up in subscriptions that cash cuts have a disproportionately damaging effect. I fear for grant funding in particular; that’s always what takes the hit when immediate savings are needed.

It seems clear to me that a deliberate decision was made in BIS to exclude the current year’s figures from their document in a cynical attempt to present a misleading picture of the settlement. It’s a shocking betrayal.

Here is a response from the Royal Astronomical Society.

The unwillingness of our own government to fund scientific research property demonstrates how vitally important it is for us to have access to European Union funding and will strengthen the determination of UK scientists to keep us in the EU.

Big Science is not the Problem – it’s Top-Down Management of Research

Posted in Finance, Science Politics, The Universe and Stuff with tags , , , , on June 2, 2015 by telescoper

I’m very late to this because I was away at the weekend, but I couldn’t resist making a comment on a piece that appeared in the Grauniad last week entitled How can we stop big science hovering up all the research funding? That piece argues for a new system of allocating research funding to avoid all the available cash being swallowed by a few big projects. This is an argument that’s been rehearsed many times before in the context of physics and astronomy, the costs of the UK contribution to facilities such as CERN (home of the Large Hadron Collider) and the European Southern Observatory being major parts of the budget of the Science and Technology Facilities Council that often threaten to squeeze the funds available for “exploiting” these facilities – in other words for doing science. What’s different about the Guardian article however is that it focusses on genomics, which has only recently threatened to become a Big Science.

Anyway, Jon Butterworth has responded with a nice piece of his own (also in the Guardian) with which I agree quite strongly. I would however like to make a couple of comments.

First of all, I think there are two different usages of the phrase “Big Science” and we should be careful not to conflate them. The first, which particularly applies in astronomy and particle physics, is that the only way to do research in these subjects is with enormous and generally very expensive pieces of kit. For this reason, and in order to share the cost in a reasonable manner, these fields tend to be dominated by large international collaborations. While it is indeed true that the Large Hadron Collider has cost a lot of money, that money has been spent by a large number of countries over a very long time. Moreover, particle physicists argued for that way of working and collectively made it a reality. The same thing happens in astronomy: the next generation of large telescopes are all transnational affairs.

The other side of the “Big Science” coin is quite a different thing. It relates to attempts to impose a top-down organization on science when that has nothing to do with the needs of the scientific research. In other words, making scientists in big research centres when it doesn’t need to be done like that. Here I am much more sceptical of the value. All the evidence from, e.g., the Research Excellence Framework is that there is a huge amount of top-class research going on in small groups here and there, much of it extremely innovative and imaginative. It’s very hard to justify concentrating everything in huge centres that are only Big because they’ve taken killed everything that’s Small, by concentrating resources to satisfy some management fixation rather than based on the quality of the research being done. I have seen far too many attempts by funding councils, especially the Engineering and Physical Sciences Research Council, to direct funding from the top down which, in most cases, is simply not the best way to deliver compelling science. Directed programmes rarely deliver exciting science, partly because the people directing them are not the people who actually know most about the field.

I am a fan of the first kind of Big Science, and not only for scientific reasons. I like the way it encourages us to think beyond the petty limitations of national politics, which is something that humanity desparately needs to get used to. But while Big Science can be good, forcing other science to work in Big institutes won’t necessarily make it better. In fact it could have the opposite effect, stifling the innovative approaches so often found in small groups. Small can be beautiful too.

Finally, I’d have to say that I found the Guardian article that started this piece of to be a bit mean-spirited. Scientists should be standing together not just to defend but to advance scientific research across all the disciplines rather than trying to set different kinds of researchers against each other. I feel the same way about funding the arts, actually. I’m all for more science funding, but don’t want to see the arts to be killed off to pay for it.

Yes, science produces too many PhDs

Posted in Science Politics with tags , , , , , on February 19, 2015 by telescoper

I came across a blog post this morning entitled Does Science Produce Too Many PhDs? I think the answer is an obvious “yes” but I’ll use the question as an excuse to rehash an argument I have presented before, which is that most analyses of the problems facing yearly career researchers in science are looking at the issue from the wrong end. I think the crisis is essentially caused by the overproduction of PhDs in this field. To understand the magnitude of the problem, consider the following.

Assume that the number of permanent academic positions in a given field (e.g. astronomy) remains constant over time. If that is the case, each retirement (or other form of departure) from a permanent position will be replaced by one, presumably junior, scientist.

This means that over an academic career, on average, each academic will produce just one PhD who will get a permanent job in academia. This of course doesn’t count students coming in from abroad, or those getting faculty positions abroad, but in the case of the UK these are probably relatively small corrections.

Under the present supply of PhD studentships an academic can expect to get a PhD student at least once every three years or so. At a minimum, therefore, over a 30 year career one can expect to have ten PhD students. A great many supervisors have more PhD students than this, but this just makes the odds worse. The expectation is that only one of these will get a permanent job in the UK. The others (nine out of ten, according to my conservative estimate) above must either leave the field or the country to find permanent employment.

The arithmetic of this situation is a simple fact of life, but I’m not sure how many prospective PhD students are aware of it. There is still a reasonable chance of getting a first postdoctoral position, but thereafter the odds are stacked against them.

The upshot of this is we have a field of understandably disgruntled young people with PhDs but no realistic prospect of ever earning a settled living working in the field they have prepared for. This problem has worsened considerably in recent  years as the number of postdoctoral positions has almost halved since 2006. New PhDs have to battle it out with existing postdoctoral researchers for the meagre supply of suitable jobs. It’s a terrible situation.

Now the powers that be – in this case the Science and Technology Facilities Council – have consistently argued that the excess PhDs go out into the wider world and contribute to the economy with the skills they have learned. That may be true in a few cases. However, my argument is that the PhD is not the right way to do this because it is ridiculously inefficient.

What we should have is a system wherein we produce more and better trained Masters level students  and fewer PhDs. This is the system that exists throughout most of Europe, in fact, and the UK is actually committed to adopt it through the Bologna process.  Not that this commitment seems to mean anything, as precisely nothing has been done to harmonize UK higher education with the 3+2+3 Bachelors+Masters+Doctorate system Bologna advocates.

The training provided in a proper two-year Masters programme will improve the skills pool for the world outside academia, and also better prepare the minority of students who go on to take a PhD. The quality of the  PhD will also improve, as only the very best and most highly motivated researchers will take that path. This used to be what happened, of course, but I don’t think it is any longer the case.

The main problem with this suggestion is that it requires big changes to the way both research and teaching are funded. The research councils turned away from funding Masters training many years ago, so I doubt if they can be persuaded to to a U-turn now. Moreover, the Research Excellence Framework provides a strong incentive for departments to produce as many PhDs as they possibly can, as these are included in an algorithmic way as part of the score for “Research Environment”. The more PhDs a department produces, the higher it will climb in the league tables. One of my targets in my current position is to double the number of PhDs produced by my School over the period 2013-18. What happens to the people concerned seems not to be a matter worthy of consideration. They’re only “outputs”…

STFC Consolidated Grants Review

Posted in Finance, Science Politics with tags , , , , , , , , on October 28, 2014 by telescoper

It’s been quite a while since I last put my community service hat on while writing a blog post, but here’s an opportunity. Last week the Science and Technology Facilities Council (STFC) published a Review of the Implementation of Consolidated Grants, which can be found in its entirety here (PDF). I encourage all concerned to read it.

Once upon a time I served on the Astronomy Grants Panel whose job it was to make recommendations on funding for Astronomy through the Consolidated Grant Scheme, though this review covers the implementation across the entire STFC remit, including Nuclear Physics, Particle Physics (Theory), Particle Physics (Experiment) and Astronomy (which includes solar-terrestrial physics and space science). It’s quite interesting to see differences in how the scheme has been implemented across these various disciplines, but I’ll just include here a couple of comments on the Astronomy side of things.

First, here is a table showing the number of academic staff for whom support was requested over the three years for which the consolidated grant system has been in existence (2011, 2012 and 2013 for rounds 1, 2 and 3 respectively).  You can see that the overall success rate was slightly better in round 3, possibly due to applicants learning more about the process over the cycle, but otherwise the outcomes seem reasonably consistent:


The last three rows of this table  on the other hand show quite clearly the impact of the “flat cash” settlement for STFC science funding on Postdoctoral Research Assistant (PDRA) support:

Constant cash means ongoing cuts in real terms; there were 11.6% fewer Astronomy PDRAs supported in 2013 than in 2011. Job prospects for the next generation of astronomers continue to dwindle…

Any other comments, either on these tables or on the report as a whole, are welcome through the comments box.