Archive for STFC

Big Science is not the Problem – it’s Top-Down Management of Research

Posted in Finance, Science Politics, The Universe and Stuff with tags , , , , on June 2, 2015 by telescoper

I’m very late to this because I was away at the weekend, but I couldn’t resist making a comment on a piece that appeared in the Grauniad last week entitled How can we stop big science hovering up all the research funding? That piece argues for a new system of allocating research funding to avoid all the available cash being swallowed by a few big projects. This is an argument that’s been rehearsed many times before in the context of physics and astronomy, the costs of the UK contribution to facilities such as CERN (home of the Large Hadron Collider) and the European Southern Observatory being major parts of the budget of the Science and Technology Facilities Council that often threaten to squeeze the funds available for “exploiting” these facilities – in other words for doing science. What’s different about the Guardian article however is that it focusses on genomics, which has only recently threatened to become a Big Science.

Anyway, Jon Butterworth has responded with a nice piece of his own (also in the Guardian) with which I agree quite strongly. I would however like to make a couple of comments.

First of all, I think there are two different usages of the phrase “Big Science” and we should be careful not to conflate them. The first, which particularly applies in astronomy and particle physics, is that the only way to do research in these subjects is with enormous and generally very expensive pieces of kit. For this reason, and in order to share the cost in a reasonable manner, these fields tend to be dominated by large international collaborations. While it is indeed true that the Large Hadron Collider has cost a lot of money, that money has been spent by a large number of countries over a very long time. Moreover, particle physicists argued for that way of working and collectively made it a reality. The same thing happens in astronomy: the next generation of large telescopes are all transnational affairs.

The other side of the “Big Science” coin is quite a different thing. It relates to attempts to impose a top-down organization on science when that has nothing to do with the needs of the scientific research. In other words, making scientists in big research centres when it doesn’t need to be done like that. Here I am much more sceptical of the value. All the evidence from, e.g., the Research Excellence Framework is that there is a huge amount of top-class research going on in small groups here and there, much of it extremely innovative and imaginative. It’s very hard to justify concentrating everything in huge centres that are only Big because they’ve taken killed everything that’s Small, by concentrating resources to satisfy some management fixation rather than based on the quality of the research being done. I have seen far too many attempts by funding councils, especially the Engineering and Physical Sciences Research Council, to direct funding from the top down which, in most cases, is simply not the best way to deliver compelling science. Directed programmes rarely deliver exciting science, partly because the people directing them are not the people who actually know most about the field.

I am a fan of the first kind of Big Science, and not only for scientific reasons. I like the way it encourages us to think beyond the petty limitations of national politics, which is something that humanity desparately needs to get used to. But while Big Science can be good, forcing other science to work in Big institutes won’t necessarily make it better. In fact it could have the opposite effect, stifling the innovative approaches so often found in small groups. Small can be beautiful too.

Finally, I’d have to say that I found the Guardian article that started this piece of to be a bit mean-spirited. Scientists should be standing together not just to defend but to advance scientific research across all the disciplines rather than trying to set different kinds of researchers against each other. I feel the same way about funding the arts, actually. I’m all for more science funding, but don’t want to see the arts to be killed off to pay for it.

Yes, science produces too many PhDs

Posted in Science Politics with tags , , , , , on February 19, 2015 by telescoper

I came across a blog post this morning entitled Does Science Produce Too Many PhDs? I think the answer is an obvious “yes” but I’ll use the question as an excuse to rehash an argument I have presented before, which is that most analyses of the problems facing yearly career researchers in science are looking at the issue from the wrong end. I think the crisis is essentially caused by the overproduction of PhDs in this field. To understand the magnitude of the problem, consider the following.

Assume that the number of permanent academic positions in a given field (e.g. astronomy) remains constant over time. If that is the case, each retirement (or other form of departure) from a permanent position will be replaced by one, presumably junior, scientist.

This means that over an academic career, on average, each academic will produce just one PhD who will get a permanent job in academia. This of course doesn’t count students coming in from abroad, or those getting faculty positions abroad, but in the case of the UK these are probably relatively small corrections.

Under the present supply of PhD studentships an academic can expect to get a PhD student at least once every three years or so. At a minimum, therefore, over a 30 year career one can expect to have ten PhD students. A great many supervisors have more PhD students than this, but this just makes the odds worse. The expectation is that only one of these will get a permanent job in the UK. The others (nine out of ten, according to my conservative estimate) above must either leave the field or the country to find permanent employment.

The arithmetic of this situation is a simple fact of life, but I’m not sure how many prospective PhD students are aware of it. There is still a reasonable chance of getting a first postdoctoral position, but thereafter the odds are stacked against them.

The upshot of this is we have a field of understandably disgruntled young people with PhDs but no realistic prospect of ever earning a settled living working in the field they have prepared for. This problem has worsened considerably in recent  years as the number of postdoctoral positions has almost halved since 2006. New PhDs have to battle it out with existing postdoctoral researchers for the meagre supply of suitable jobs. It’s a terrible situation.

Now the powers that be – in this case the Science and Technology Facilities Council – have consistently argued that the excess PhDs go out into the wider world and contribute to the economy with the skills they have learned. That may be true in a few cases. However, my argument is that the PhD is not the right way to do this because it is ridiculously inefficient.

What we should have is a system wherein we produce more and better trained Masters level students  and fewer PhDs. This is the system that exists throughout most of Europe, in fact, and the UK is actually committed to adopt it through the Bologna process.  Not that this commitment seems to mean anything, as precisely nothing has been done to harmonize UK higher education with the 3+2+3 Bachelors+Masters+Doctorate system Bologna advocates.

The training provided in a proper two-year Masters programme will improve the skills pool for the world outside academia, and also better prepare the minority of students who go on to take a PhD. The quality of the  PhD will also improve, as only the very best and most highly motivated researchers will take that path. This used to be what happened, of course, but I don’t think it is any longer the case.

The main problem with this suggestion is that it requires big changes to the way both research and teaching are funded. The research councils turned away from funding Masters training many years ago, so I doubt if they can be persuaded to to a U-turn now. Moreover, the Research Excellence Framework provides a strong incentive for departments to produce as many PhDs as they possibly can, as these are included in an algorithmic way as part of the score for “Research Environment”. The more PhDs a department produces, the higher it will climb in the league tables. One of my targets in my current position is to double the number of PhDs produced by my School over the period 2013-18. What happens to the people concerned seems not to be a matter worthy of consideration. They’re only “outputs”…

STFC Consolidated Grants Review

Posted in Finance, Science Politics with tags , , , , , , , , on October 28, 2014 by telescoper

It’s been quite a while since I last put my community service hat on while writing a blog post, but here’s an opportunity. Last week the Science and Technology Facilities Council (STFC) published a Review of the Implementation of Consolidated Grants, which can be found in its entirety here (PDF). I encourage all concerned to read it.

Once upon a time I served on the Astronomy Grants Panel whose job it was to make recommendations on funding for Astronomy through the Consolidated Grant Scheme, though this review covers the implementation across the entire STFC remit, including Nuclear Physics, Particle Physics (Theory), Particle Physics (Experiment) and Astronomy (which includes solar-terrestrial physics and space science). It’s quite interesting to see differences in how the scheme has been implemented across these various disciplines, but I’ll just include here a couple of comments on the Astronomy side of things.

First, here is a table showing the number of academic staff for whom support was requested over the three years for which the consolidated grant system has been in existence (2011, 2012 and 2013 for rounds 1, 2 and 3 respectively).  You can see that the overall success rate was slightly better in round 3, possibly due to applicants learning more about the process over the cycle, but otherwise the outcomes seem reasonably consistent:

STFC_Con1

The last three rows of this table  on the other hand show quite clearly the impact of the “flat cash” settlement for STFC science funding on Postdoctoral Research Assistant (PDRA) support:
STFC_Con

Constant cash means ongoing cuts in real terms; there were 11.6% fewer Astronomy PDRAs supported in 2013 than in 2011. Job prospects for the next generation of astronomers continue to dwindle…

Any other comments, either on these tables or on the report as a whole, are welcome through the comments box.

 

Scotland Should Decide…

Posted in Bad Statistics, Politics, Science Politics with tags , , , , , , , , , on September 9, 2014 by telescoper

There being less than two weeks to go before the forthcoming referendum on Scottish independence, a subject on which I have so far refrained from commenting, I thought I would write something on it from the point of view of an English academic. I was finally persuaded to take the plunge because of incoming traffic to this blog from  pro-independence pieces here and here and a piece in Nature News on similar matters.

I’ll say at the outset that this is an issue for the Scots themselves to decide. I’m a believer in democracy and think that the wishes of the Scottish people as expressed through a referendum should be respected. I’m not qualified to express an opinion on the wider financial and political implications so I’ll just comment on the implications for science research, which is directly relevant to at least some of the readers of this blog. What would happen to UK research if Scotland were to vote yes?

Before going on I’ll just point out that the latest opinion poll by Yougov puts the “Yes” (i.e. pro-independence) vote ahead of “No” at 51%-49%. As the sample size for this survey was only just over a thousand, it has a margin of error of ±3%. On that basis I’d call the race neck-and-neck to within the resolution of the survey statistics. It does annoy me that pollsters never bother to state their margin of error in press released. Nevertheless, the current picture is a lot closer than it looked just a month ago, which is interesting in itself, as it is not clear to me as an outsider why it has changed so dramatically and so quickly.

Anyway, according to a Guardian piece not long ago.

Scientists and academics in Scotland would lose access to billions of pounds in grants and the UK’s world-leading research programmes if it became independent, the Westminster government has warned.

David Willetts, the UK science minister, said Scottish universities were “thriving” because of the UK’s generous and highly integrated system for funding scientific research, winning far more funding per head than the UK average.

Unveiling a new UK government paper on the impact of independence on scientific research, Willetts said that despite its size the UK was second only to the United States for the quality of its research.

“We do great things as a single, integrated system and a single integrated brings with it great strengths,” he said.

Overall spending on scientific research and development in Scottish universities from government, charitable and industry sources was more than £950m in 2011, giving a per capita spend of £180 compared to just £112 per head across the UK as a whole.

It is indeed notable that Scottish universities outperform those in the rest of the United Kingdom when it comes to research, but it always struck me that using this as an argument against independence is difficult to sustain. In fact it’s rather similar to the argument that the UK does well out of European funding schemes so that is a good argument for remaining in the European Union. The point is that, whether or not a given country benefits from the funding system, it still has to do so by following an agenda that isn’t necessarily its own. Scotland benefits from UK Research Council funding, but their priorities are set by the Westminster government, just as the European Research Council sets (sometimes rather bizarre) policies for its schemes. Who’s to say that Scotland wouldn’t do even better than it does currently by taking control of its own research funding rather than forcing its institutions to pander to Whitehall?

It’s also interesting to look at the flipside of this argument. If Scotland were to become independent, would the “billions” of research funding it would lose (according to the statement by Willetts, who is no longer the Minister in charge) benefit science in what’s left of the United Kingdom? There are many in England and Wales who think the existing research budget is already spread far too thinly and who would welcome an increase south of the border. If this did happen you could argue that, from a very narrow perspective, Scottish independence would be good for science in the rest of what is now the United Kingdom, but that depends on how much the Westminster government sets the science budget.

This all depends on how research funding would be redistributed if and when Scotland secedes from the Union, which could be done in various ways. The simplest would be for Scotland to withdraw from RCUK entirely. Because of the greater effectiveness of Scottish universities at winning funding compared to the rest of the UK, Scotland would have to spend more per capita to maintain its current level of resource, which is why many Scottish academics will be voting “no”. On the other hand, it has been suggested (by the “yes” campaign) that Scotland could buy back from its own revenue into RCUK at the current effective per capita rate  and thus maintain its present infrastructure and research expenditure at no extra cost. This, to me, sounds like wanting to have your cake and eat it,  and it’s by no means obvious that Westminster could or should agree to such a deal. All the soundings I have taken suggest that an independent Scotland should expect no such generosity, and will get actually zilch from the RCUK.

If full separation is the way head, science in Scotland would be heading into uncharted waters. Among the questions that would need to be answered are:

  •  what will happen to RCUK funded facilities and staff currently situated in Scotland, such as those at the UKATC?
  •  would Scottish researchers lose access to facilities located in England, Wales or Northern Ireland?
  •  would Scotland have to pay its own subscriptions to CERN, ESA and ESO?

These are complicated issues to resolve and there’s no question that a lengthy process of negotiation would be needed to resolved them. In the meantime, why should RCUK risk investing further funds in programmes and facilities that may end up outside the UK (or what remains of it)? This is a recipe for planning blight on an enormous scale.

And then there’s the issue of EU membership. Would Scotland be allowed to join the EU immediately on independence? If not, what would happen to EU funded research?

I’m not saying these things will necessarily work out badly in the long run for Scotland, but they are certainly questions I’d want to have answered before I were convinced to vote “yes”. I don’t have a vote so my opinion shouldn’t count for very much, but I wonder if there are any readers of this blog from across the Border who feel like expressing an opinion?

 

Round the Horn Antenna

Posted in LGBT, The Universe and Stuff with tags , , , , , on August 28, 2014 by telescoper

The other day I was looking through my copy of Monthly Notices of the Royal Astronomical Society (which I buy for the dirty pictures).  Turning my attention to the personal columns, I discovered an advertisement for the Science & Technology Facilities Council which is, apparently, considering investing in new space missions related to astronomy and cosmology. Always eager to push back the frontiers of science, I hurried down to their address in Swindon to find out what was going on.

 

ME: (Knocks on door) Hello. Is there anyone there?

JULIAN: Oh hello! My name’s Julian, and this is my friend Sandy.

SANDY: Oooh hello! What can we do for you?

ME: Hello to you both. Is this Polaris House?

JULIAN: Not quite. Since we took over we changed the name…

ME: To?

SANDY: It’s now called Polari House…

JULIAN: ..on account of that’s the only language spoken around here.

ME: So you’re in charge of the British Space Programme then?

JULIAN:  Yes, owing to the budget, the national handbag isn’t as full as it used to be so now it’s just me and her.

SANDY: But never fear we’re both dab hands with thrusters.

JULIAN: Our motto is “You can vada about in any band, with a satellite run  by Jules and…

SANDY: …Sand.

ME: I heard that you’re looking for some input.

SANDY: Ooooh. He’s bold, in’e?

ME: I mean for your consultation exercise…

JULIAN: Oh yes. I forgot about that. Well I’m sure we’d welcome your contribution any time, ducky.

ME: Well I was wondering what you could tell me about Moonlite?

SANDY: You’ve come to the right place. She had an experience by Moonlight, didn’t you Jules?

JULIAN: Yes. Up the Acropolis…

ME: I mean the Space Mission “Moonlite”

SANDY: Oh, of course. Well, it’s only small but it’s very stimulating.

JULIAN: Hmmm.

SANDY: Yes. It gets blasted off into space and whooshes off to the Moon…

JULIAN: …the backside thereof…

SANDY: ..and when it gets there it shoves these probes in to see what happens.

ME: Why?

SANDY: Why not?

ME: Seems a bit pointless to me.

JULIAN: There’s no pleasing some people is there?

ME: Haven’t you got anything more impressive?

SANDY: Like what?

ME:  Maybe something that goes a bit further out? Mars, perhaps?

JULIAN: Well the French have this plan to send some great butch omi to troll around on Mars but we haven’t got the metzas so we have to satisfy ourselves with something a bit more bijou…

SANDY: Hmm…You can say that again.

JULIAN: You don’t have to be big to be bona.

SANDY: Anyway, we had our shot at Mars and it went willets up.

ME: Oh yes, I remember that thing named after a dog.

JULIAN: That’s right. Poodle.

ME: Do you think a man will ever get as far as Uranus?

JULIAN&SANDY: Oooh! Bold!

SANDY: Well I’ll tell you what. I’ll show you something that can vada out to the very edge of the Universe!

ME: That sounds exciting.

JULIAN: I’ll try to get it up right now.

ME: Well…er…

JULIAN: I mean on the computer

ME: I say, that’s an impressive piece of equipment

JULIAN: Thank you

SANDY: Oh don’t encourage her…

ME: I meant the computer.

JULIAN: Yes, it’s a 14″ console.

SANDY:  And, believe me, 14 inches will console anyone!

JULIAN; There you are. Look at that.

ME: It looks very impressive. What is it?

SANDY: This is an experiment designed to charper for the heat of the Big Bang.

JULIAN. Ooer.

SANDY: The Americans launched WMAP and the Europeans had PLANCK. We’ve merged the two ideas and have called it ….PLMAP.

ME: Wouldn’t it have been better if you’d made the name the other way around? I mean with the first bit of WMAP and the second bit of Planck. On second thoughts maybe not..

JULIAN: It’s a little down-market but we have high hopes.

SANDY: Yes, Planck had two instruments called HFI and LFI. We couldn’t afford two so we made do with one.

JULIAN: It’s called MFI. That’s why it’s a bit naff.

ME: I see. What are these two round things either side?

SANDY: They’re the bolometers…

ME: What is this this long thing in between pointing up? And why is it leaning to one side?

SANDY: Well that’s not unusual in my experience …

JULIAN:  Shush. It’s an off-axis Gregorian telescope if you must know.

ME: And what about this round the back?

SANDY: That’s your actual dish. It’s very receptive, if you know what I mean.

ME: What’s that inside?

JULIAN: That’s a horn antenna. We didn’t make that ourselves. We had to get it from elsewhere.

ME: So who gave you the horn?

SANDY: That’s for us to know and you to find out!

ME: So what does it all do?

JULIAN: It’s designed to make a map of what George Smoot called “The Eek of God”.

ME: Can it do polarization?

JULIAN: But of course! We polari-ize everything!

ME: Like BICEP?

JULIAN: Cheeky!

SANDY: Of course. We’re partial to a nice lally too!

JULIAN: But seriously, it’s fabulosa…

SANDY: …Or it would be if someone hadn’t neglected to read the small print.

ME: Why? Is there a problem?

JULIAN: Well, frankly, yes. We ran out of money.

SANDY: It was only when we got it out the box we realised.

ME: What?

JULIAN & SANDY: Batteries Not Included!

With apologies to Barry Took and Marty Feldman, who wrote the original Julian and Sandy sketches performed by Hugh Paddick (Julian) and Kenneth Williams (Sandy) for the radio show Round the Horne. Here’s an example of the real thing:

 

 

 

 

 

 

A Plug for Some Research…

Posted in The Universe and Stuff with tags , , , , on May 12, 2014 by telescoper

Very busy today so I just thought I’d give a bit of publicity to a paper that’s just been accepted for publication. I’m actually one of the authors, but the other guys (Dipak Munshi of Sussex, Bin Hu of Leiden, Alessandro Renzi of Rome, and Alan Heavens of South Kensington Technical Imperial College) did all the work! I’m posting it mainly to remind myself that there is a world outside of administration. If it weren’t for my inestimable (STFC-funded) postdoc, Dipak Munshi, I don’t know where my research would be!

Here is the abstract:

We use the optimised skew-spectrum as well as the skew-spectra associated with the Minkowski Functionals (MFs) to test the possibility of using the cross-correlation of the Integrated Sachs-Wolfe effect (ISW) and lensing of the cosmic microwave background (CMB) radiation to detect deviations in the theory of gravity away from General Relativity (GR). We find that the although both statistics can put constraints on modified gravity, the optimised skew-spectra are especially sensitive to the parameter B0   that denotes the the Compton wavelength of the scalaron at the present epoch. We investigate three modified gravity theories, namely: the Post-Parametrised Friedmanian (PPF) formalism; the Hu-Sawicki (HS) model; and the Bertschinger-Zukin (BZ) formalism. Employing a likelihood analysis for an experimental setup similar to ESA’s Planck mission, we find that, assuming GR to be the correct model, we expect the constraints from the first two skew-spectra, S(0)   and S(1), to be the same: B0 <0.45  at 95  confidence level (CL), and B0 <0.67  at 99  CL in the BZ model. The third skew-spectrum does not give any meaningful constraint. We find that the optimal skew-spectrum provides much more powerful constraint, giving B0 <0.071  at 95  CL and B0 <0.15  at 99  CL, which is essentially identical to what can be achieved using the full bispectrum.

It’s part of a long sequence of papers emanating from work done by Dipak (with various combinations of co-authors, including myself) which have been aimed at optimising the use of statistical techniques for detecting and quantifying possible departures from the standard model of cosmology using various kinds of data; in this case the paper is entitled Probing Modified Gravity Theories with ISW and CMB Lensing; `ISW means the Integrated Sachs-Wolfe Effect and CMB is the cosmic microwave background. This kind of work doesn’t have the glamour of some cosmological research – I don’t think we’ll be writing a press release when it gets published! – but it is the kind of preparatory analysis that is essential if cosmologists are to make the most of present and forthcoming observational data, which is why we keep plugging away…

Day Trip to Harwell

Posted in Education, Science Politics with tags , , , on April 1, 2014 by telescoper

Only time for a quick post as I’ve just got back from a visit to the Rutherford Appleton Laboratory which is located at Harwell (in the heart of the Midlands).

I was there to find out about the Science and Technology Facilities Council‘s Apprenticeship scheme, as we are planning to introduce a similar scheme at the University of Sussex and needed some advice about how to set it up. I hope to write more about that in due course.

Anyway, it was a very informative and useful visit with the added bonus that we also got an impromptu guided tour of the Diamond Light Source (and its associated workshops where some of the current STFC apprentices are employed). The Diamond Light Source is actually shut down at the moment so various upgrades can be performed, and we were therefore allowed up close to where the beam lines are. That was very interesting indeed, especially when I saw that special devices are apparently deployed to counteract the effects of Cold Dark Matter..

Follow

Get every new post delivered to your Inbox.

Join 4,193 other followers