Archive for Supersymmetry

Hic Sunt Leones

Posted in The Universe and Stuff with tags , , , , , , on November 15, 2017 by telescoper

Just time for a very quick post, as today I travelled to Brighton to attend an inaugural lecture by Professor Antonella De Santo at the University of Sussex.

Antonella was the first female Professor of Physics at the University of Sussex and I’m glad to say she was promoted to a Chair during my watch as Head of the School of Mathematical and Physical Sciences, at Sussex. That was about four years ago, so it has taken a while to arrange her inaugural lecture, but it was worth the wait to be able to celebrate Antonella’s many achievements.

The lecture was about the search for physics beyond the standard model using the ATLAS experiment at the Large Hadron Collider, with a focus on supersymmetry and possibly candidates for dark matter. It was a very nice lecture that told a complex story through pictures and avoiding any difficult mathematics, followed by a drinks reception during which I got to have a gossip with some former colleagues.

The title, by the way, stems from the practice among mediaeval cartographers of marking terra incognita with `Here be lions’ or `Here be dragons‘. I hasten to add that no lions were harmed during the talk.

Anyway, it was nice to have an excuse to visit Brighton again. The last time I was here was over a year ago. It was nice to see some familiar faces, especially in the inestimable Miss Lemon, with whom I enjoyed a very nice curry after the talk!

Now for a sleep and the long journey back to Cardiff tomorrow morning!

Advertisements

The Dark Energy MacGuffin

Posted in Science Politics, The Universe and Stuff with tags , , , , , , , , on December 19, 2015 by telescoper

Back from a two-day meeting in Edinburgh about the Euclid Mission, I have to spend a couple of days this weekend in the office before leaving for the holidays. I was a bit surprised at the end of the meeting to be asked if I would be on the panel for the closing discussion, discussing questions raised by the audience. The first of these questions was – and I have to paraphrase becase I don’t remember exactly – whether it would be disappointing if the Euclid mission merely confirmed that observations were consistent with a “simple” cosmological constant rather than any of the more exotic (and perhaps more exciting) alternatives that have been proposed by theorists. I think that’s the likely outcome of Euclid, actually, and I don’t think it would be disappointing if it turned out to be the case. Moreover, testing theories of dark energy is just one of the tasks this mission will undertake and it may well be the case that in years to come Euclid is remembered for something other than dark energy. Anyway, this all triggered a memory of an old post of mine about Alfred Hitchcock so with apologies for repeating something I blogged about 4 years ago, here is a slight reworking of an old piece.

–0–

Unpick the plot of any thriller or suspense movie and the chances are that somewhere within it you will find lurking at least one MacGuffin. This might be a tangible thing, such the eponymous sculpture of a Falcon in the archetypal noir classic The Maltese Falcon or it may be rather nebulous, like the “top secret plans” in Hitchcock’s The Thirty Nine Steps. Its true character may be never fully revealed, such as in the case of the glowing contents of the briefcase in Pulp Fiction , which is a classic example of the “undisclosed object” type of MacGuffin, or it may be scarily obvious, like a doomsday machine or some other “Big Dumb Object” you might find in a science fiction thriller. It may even not be a real thing at all. It could be an event or an idea or even something that doesn’t exist in any real sense at all, such the fictitious decoy character George Kaplan in North by Northwest. In fact North by North West is an example of a movie with more than one MacGuffin. Its convoluted plot involves espionage and the smuggling of what is only cursorily described as “government secrets”. These are the main MacGuffin; George Kaplan is a sort of sub-MacGuffin. But although this is behind the whole story, it is the emerging romance, accidental betrayal and frantic rescue involving the lead characters played by Cary Grant and Eve Marie Saint that really engages the characters and the audience as the film gathers pace. The MacGuffin is a trigger, but it soon fades into the background as other factors take over.

Whatever it is or is not, the MacGuffin is responsible for kick-starting the plot. It makes the characters embark upon the course of action they take as the tale begins to unfold. This plot device was particularly beloved by Alfred Hitchcock (who was responsible for introducing the word to the film industry). Hitchcock was however always at pains to ensure that the MacGuffin never played as an important a role in the mind of the audience as it did for the protagonists. As the plot twists and turns – as it usually does in such films – and its own momentum carries the story forward, the importance of the MacGuffin tends to fade, and by the end we have usually often forgotten all about it. Hitchcock’s movies rarely bother to explain their MacGuffin(s) in much detail and they often confuse the issue even further by mixing genuine MacGuffins with mere red herrings.

Here is the man himself explaining the concept at the beginning of this clip. (The rest of the interview is also enjoyable, convering such diverse topics as laxatives, ravens and nudity..)

 

There’s nothing particular new about the idea of a MacGuffin. I suppose the ultimate example is the Holy Grail in the tales of King Arthur and the Knights of the Round Table and, much more recently, the Da Vinci Code. The original Grail itself is basically a peg on which to hang a series of otherwise disconnected stories. It is barely mentioned once each individual story has started and, of course, is never found.

Physicists are fond of describing things as “The Holy Grail” of their subject, such as the Higgs Boson or gravitational waves. This always seemed to me to be an unfortunate description, as the Grail quest consumed a huge amount of resources in a predictably fruitless hunt for something whose significance could be seen to be dubious at the outset.The MacGuffin Effect nevertheless continues to reveal itself in science, although in different forms to those found in Hollywood.

The Large Hadron Collider (LHC), switched on to the accompaniment of great fanfares a few years ago, provides a nice example of how the MacGuffin actually works pretty much backwards in the world of Big Science. To the public, the LHC was built to detect the Higgs Boson, a hypothetical beastie introduced to account for the masses of other particles. If it exists the high-energy collisions engineered by LHC should reveal its presence. The Higgs Boson is thus the LHC’s own MacGuffin. Or at least it would be if it were really the reason why LHC has been built. In fact there are dozens of experiments at CERN and many of them have very different motivations from the quest for the Higgs, such as evidence for supersymmetry.

Particle physicists are not daft, however, and they have realised that the public and, perhaps more importantly, government funding agencies need to have a really big hook to hang such a big bag of money on. Hence the emergence of the Higgs as a sort of master MacGuffin, concocted specifically for public consumption, which is much more effective politically than the plethora of mini-MacGuffins which, to be honest, would be a fairer description of the real state of affairs.

Even this MacGuffin has its problems, though. The Higgs mechanism is notoriously difficult to explain to the public, so some have resorted to a less specific but more misleading version: “The Big Bang”. As I’ve already griped, the LHC will never generate energies anything like the Big Bang did, so I don’t have any time for the language of the “Big Bang Machine”, even as a MacGuffin.

While particle physicists might pretend to be doing cosmology, we astrophysicists have to contend with MacGuffins of our own. One of the most important discoveries we have made about the Universe in the last decade is that its expansion seems to be accelerating. Since gravity usually tugs on things and makes them slow down, the only explanation that we’ve thought of for this perverse situation is that there is something out there in empty space that pushes rather than pulls. This has various possible names, but Dark Energy is probably the most popular, adding an appropriately noirish edge to this particular MacGuffin. It has even taken over in prominence from its much older relative, Dark Matter, although that one is still very much around.

We have very little idea what Dark Energy is, where it comes from, or how it relates to other forms of energy we are more familiar with, so observational astronomers have jumped in with various grandiose strategies to find out more about it. This has spawned a booming industry in surveys of the distant Universe (such as the Dark Energy Survey or the Euclid mission I mentioned in the preamble) all aimed ostensibly at unravelling the mystery of the Dark Energy. It seems that to get any funding at all for cosmology these days you have to sprinkle the phrase “Dark Energy” liberally throughout your grant applications.

The old-fashioned “observational” way of doing astronomy – by looking at things hard enough until something exciting appears (which it does with surprising regularity) – has been replaced by a more “experimental” approach, more like that of the LHC. We can no longer do deep surveys of galaxies to find out what’s out there. We have to do it “to constrain models of Dark Energy”. This is just one example of the not necessarily positive influence that particle physics has had on astronomy in recent times and it has been criticised very forcefully by Simon White.

Whatever the motivation for doing these projects now, they will undoubtedly lead to new discoveries. But my own view is that there will never be a solution of the Dark Energy problem until it is understood much better at a conceptual level, and that will probably mean major revisions of our theories of both gravity and matter. I venture to speculate that in twenty years or so people will look back on the obsession with Dark Energy with some amusement, as our theoretical language will have moved on sufficiently to make it seem irrelevant.

But that’s how it goes with MacGuffins. Even the Maltese Falcon turned out in the end to be a fake.

Higher Energy Physics at the LHC

Posted in The Universe and Stuff with tags , , , , on June 3, 2015 by telescoper

I’ve been busy with meetings most of the day but couldn’t resist a quick post to catch up on the exciting events at CERN. Today is the day that the Large Hadron Collider was due to start operating at its highest collision energies so far, 13 TeV. It was quite a nervous morning, and the first attempt to ramp up to this energy failed.

Here was the scene this morning in the control room of the ATLAS experiment.

Control Room

This kind of photograph always reminds me of the inside of a betting shop..

However, it didn’t take long to succeed, at which point much celebration ensued. This story has a strong local connection here in the Department of Physics & Astronomy at the University of Sussex. The run coordinator for the ATLAS experiment on the Large Hadron Collider is Dr Alessandro Cerri of Sussex  and he has figured prominently in today’s action. Here he is, having a glass of bubbly (purely medicinal, I’m assured) when they first achieved stable beams at the new collision scale:

Cerri

He also produced this nice quote which I took from the ATLAS Twitter feed.

LHC_Restart

It is hoped that operating at 13 TeV will allow the various detectors on the Large Hadron Collider to probe the possible existence of supersysmmetric particles which have so far defied detection. On the other hand if it doesn’t find them it will cause a lot of theorists to go back to the drawing board. Incidentally I’ve been going around asking particle physicists how much they’d be willing to bet on the LHC finding evidence of supersymmetry and I can’t get any of them to make a wager with me. Any one willing to rise to the challenge please do so via the Comments Box.

Of course we all know that the main reason for increasing the LHC’s energy is not to detect supersymmetric particles, or indeed any other evidence of physics beyond the standard model that had previous been accessible. It’s to generate papers with even longer author lists

Bayes’ Theorem and the Search for Supersymmetry

Posted in The Universe and Stuff with tags , , , , on May 13, 2012 by telescoper

Interesting comments about Bayes’ theorem and the prospects for detecting supersymmetry at the Large Hadron Collider. This piece explains how a non-detection isn’t always “absence of evidence” but can indeed by “evidence of absence”. It’s also worth reading the comments if you’re wondering whether what people say about Lubos Motl is actually true…

viXra log

Here’s a puzzle. There are three cups upside down on a table. You friend tells you that a pea is hidden under one of them. Based on past experience you estimate that there is a 90% probability that this is true. You turn over two cups and don’t find the pea. What is the probability now that there is a pea underneath? You may want to think about this before reading on.

Naively you might think that two-thirds of the parameter space has been eliminated, so the probability has gone from 90% to 30%, but this is quite wrong. You can use Bayes Theorem to get the correct answer but let me give you a more intuitive frequentist answer. The situation can be models by imagining that there are thirty initial possibilities with equal probability. Nine of them have a pea under the first cup, nine more under the second and nine more under the third…

View original post 880 more words

More on MacGuffins

Posted in Science Politics, The Universe and Stuff with tags , , , , , , , , on August 17, 2011 by telescoper

I’m very pressed for time this week  so I thought I’d cheat by resurrecting and updating an old post from way back when I had just started blogging, about three years ago.  I thought of doing this because I just came across a Youtube clip of the late great Alfred Hitchcock, which you’ll now find in the post. I’ve also made a couple of minor editorial changes, but basically it’s a recycled piece and you should therefore read it for environmental reasons.

–0–

Unpick the plot of any thriller or suspense movie and the chances are that somewhere within it you will find lurking at least one MacGuffin. This might be a tangible thing, such the eponymous sculpture of a Falcon in the archetypal noir classic The Maltese Falcon or it may be rather nebulous, like the “top secret plans” in Hitchcock’s The Thirty Nine Steps. Its true character may be never fully revealed, such as in the case of the glowing contents of the briefcase in Pulp Fiction , which is a classic example of the “undisclosed object” type of MacGuffin. Or it may be scarily obvious, like a doomsday machine or some other “Big Dumb Object” you might find in a science fiction thriller. It may even not be a real thing at all. It could be an event or an idea or even something that doesn’t exist in any real sense at all, such the fictitious decoy character George Kaplan in North by Northwest.

Whatever it is or is not, the MacGuffin is responsible for kick-starting the plot. It makes the characters embark upon the course of action they take as the tale begins to unfold. This plot device was particularly beloved by Alfred Hitchcock (who was responsible for introducing the word to the film industry). Hitchcock was however always at pains to ensure that the MacGuffin never played as an important a role in the mind of the audience as it did for the protagonists. As the plot twists and turns – as it usually does in such films – and its own momentum carries the story forward, the importance of the MacGuffin tends to fade, and by the end we have often forgotten all about it. Hitchcock’s movies rarely bother to explain their MacGuffin(s) in much detail and they often confuse the issue even further by mixing genuine MacGuffins with mere red herrings.

Here is the man himself explaining the concept at the beginning of this clip. (The rest of the interview is also enjoyable, convering such diverse topics as laxatives, ravens and nudity..)

North by North West is a fine example of a multi-MacGuffin movie. The centre of its convoluted plot involves espionage and the smuggling of what is only cursorily described as “government secrets”. But although this is behind the whole story, it is the emerging romance, accidental betrayal and frantic rescue involving the lead characters played by Cary Grant and Eve Marie Saint that really engages the characters and the audience as the film gathers pace. The MacGuffin is a trigger, but it soon fades into the background as other factors take over.

There’s nothing particular new about the idea of a MacGuffin. I suppose the ultimate example is the Holy Grail in the tales of King Arthur and the Knights of the Round Table and, much more recently, the Da Vinci Code. The original Grail itself is basically a peg on which to hang a series of otherwise disconnected stories. It is barely mentioned once each individual story has started and, of course, is never found.

Physicists are fond of describing things as “The Holy Grail” of their subject, such as the Higgs Boson or gravitational waves. This always seemed to me to be an unfortunate description, as the Grail quest consumed a huge amount of resources in a predictably fruitless hunt for something whose significance could be seen to be dubious at the outset.The MacGuffin Effect nevertheless continues to reveal itself in science, although in different forms to those found in Hollywood.

The Large Hadron Collider (LHC), switched on to the accompaniment of great fanfares a few years ago, provides a nice example of how the MacGuffin actually works pretty much backwards in the world of Big Science. To the public, the LHC was built to detect the Higgs Boson, a hypothetical beastie introduced to account for the masses of other particles. If it exists the high-energy collisions engineered by LHC should reveal its presence. The Higgs Boson is thus the LHC’s own MacGuffin. Or at least it would be if it were really the reason why LHC has been built. In fact there are dozens of experiments at CERN and many of them have very different motivations from the quest for the Higgs, such as evidence for supersymmetry.

Particle physicists are not daft, however, and they have realised that the public and, perhaps more importantly, government funding agencies need to have a really big hook to hang such a big bag of money on. Hence the emergence of the Higgs as a sort of master MacGuffin, concocted specifically for public consumption, which is much more effective politically than the plethora of mini-MacGuffins which, to be honest, would be a fairer description of the real state of affairs.

Even this MacGuffin has its problems, though. The Higgs mechanism is notoriously difficult to explain to the public, so some have resorted to a less specific but more misleading version: “The Big Bang”. As I’ve already griped, the LHC will never generate energies anything like the Big Bang did, so I don’t have any time for the language of the “Big Bang Machine”, even as a MacGuffin.

While particle physicists might pretend to be doing cosmology, we astrophysicists have to contend with MacGuffins of our own. One of the most important discoveries we have made about the Universe in the last decade is that its expansion seems to be accelerating. Since gravity usually tugs on things and makes them slow down, the only explanation that we’ve thought of for this perverse situation is that there is something out there in empty space that pushes rather than pulls. This has various possible names, but Dark Energy is probably the most popular, adding an appropriately noirish edge to this particular MacGuffin. It has even taken over in prominence from its much older relative, Dark Matter, although that one is still very much around.

We have very little idea what Dark Energy is, where it comes from, or how it relates to other forms of energy we are more familiar with, so observational astronomers have jumped in with various grandiose strategies to find out more about it. This has spawned a booming industry in surveys of the distant Universe (such as the Dark Energy Survey) all aimed ostensibly at unravelling the mystery of the Dark Energy. It seems that to get any funding at all for cosmology these days you have to sprinkle the phrase “Dark Energy” liberally throughout your grant applications.

The old-fashioned “observational” way of doing astronomy – by looking at things hard enough until something exciting appears (which it does with surprising regularity) – has been replaced by a more “experimental” approach, more like that of the LHC. We can no longer do deep surveys of galaxies to find out what’s out there. We have to do it “to constrain models of Dark Energy”. This is just one example of the not necessarily positive influence that particle physics has had on astronomy in recent times and it has been criticised very forcefully by Simon White.

Whatever the motivation for doing these projects now, they will undoubtedly lead to new discoveries. But my own view is that there will never be a solution of the Dark Energy problem until it is understood much better at a conceptual level, and that will probably mean major revisions of our theories of both gravity and matter. I venture to speculate that in twenty years or so people will look back on the obsession with Dark Energy with some amusement, as our theoretical language will have moved on sufficiently to make it seem irrelevant.

But that’s how it goes with MacGuffins. Even the Maltese Falcon turned out to be a fake in the end.

More Boring Than Advertised? (via Occasional Musings of a Particle Physicist)

Posted in The Universe and Stuff with tags , , , , , on July 29, 2011 by telescoper

My (probably ill-informed) earlier post about particle physics seems to have generated quite a lot of traffic, so I thought I’d reblog this short article (by a real particle physicist) for the benefit of those people who want to find out about the latest results from someone who actually knows what they’re talking about.

You would be forgiven for seeing the headlines from EPS-HEP 2011 and thinking the LHC is less interesting than maybe you were led to believe. A year or so ago you might have expected hints of supersymmetry, black holes, extra dimensions or even something more exotic to have been found in the ever increasing LHC datasets. But the current story is that the Standard Model is still describing all data analysed so far pretty damn well. There may or ma … Read More

via Occasional Musings of a Particle Physicist

Never mind the Higgs, where’s the Supersymmetry?

Posted in The Universe and Stuff with tags , , , , , on July 25, 2011 by telescoper

There’s been a big conference on High Energy Physics going on in Grenoble since last Thursday, which I’ve been following a little bit via Tweets from various participants and links to blog articles contained therein. The media seem to be almost exclusively focussed on the Higgs boson but, as is made clear in a Guardian blog article by John Butterworth, the situation is that the latest data from the Large Hadron Collider do not provide clear evidence for it yet. Strangely, though, the Guardian ran another piece at the weekend claiming that “CERN scientists suspect a glimpse of the Higgs”, which appears to have been based on a blog article which offers various possible interpretations of a set of measurements which lie at the margin of statistical significance. It must be very frustrating not having a clear detection, but this  strikes me as clutching at straws. Far better to wait for more data before speculating in public. Nobody really expected to see the Higgs so soon, so it’s surely better to wait for more data rather than  over-interpreting what’s there. Let’s put it down to overenthusiasm.

However the real point of the latest news is not in my view the lack of, or marginal nature of, evidence for the Higgs Boson. It’s the extremely strong limits that have been placed on supersymmetry. This is of particular (geddit?) interest to me as a cosmologist because supersymmetric theories provide us with plausible candidates for the non-baryonic dark matter we think pervades the Universe.  The possibilities include fermionic counterparts of the bosons that mediate the standard model interactions. The photon, for example, which is a boson, mediates the electromagnetic interaction between charged particles; in SUSY theories it would have a fermionic partner called a photino. There would also be the Higgsino (assuming there is a Higgs!), gluino, gravitino and so on. Supersymmetry is a beautiful idea and many theorists love it to bits, but there isn’t a shred of evidence that has anything to do with the way nature is.

The search for supersymmetry is thus more directly relevant to my work than the Higgs, in fact, but the Large Hadron Collider was largely “sold” to politicians and the public in terms of the quest for the Higgs.  That’s the MacGuffin, as Alfred Hitchcock would have said. Actually the LHC will do many other things, but I guess it’s easier to make the case for funding to government if you have one Big Idea rather than lots of smaller ones.

Anyway, a piece from New Scientist today hits the nail on the head. While the Higgs search may or may not be producing tantalising clues, the searches for supersymmetry has drawn a complete blank. Zilch. Nada. Not the merest smidgeon of a scintilla. The class of supersymmetric theories is broad and no doubt many possibilities remain viable; the current measurements only rule out the “minimal” variety. But I think this is a timely reminder not to take nature for granted. Perhaps an  ugly fact is about to slay a beautiful hypothesis…

UPDATE: Bookmaker Paddy Power has shortened the odds on a Higgs discovery this year from 12-1 against to 3-1 on.