Archive for Tycho Brahe

Ligatures, Diphthongs and Supernovae

Posted in History, Pedantry, The Universe and Stuff with tags , , , , , , , , on January 18, 2016 by telescoper

At the weekend I noticed a nice article by John Butterworth on his Grauniad blog about where Gold comes from. Regular readers of this blog (Sid and Doris Bonkers) know that I am not at all pedantic but my attention was drawn to the plural of supernova in the preamble:

Supernovas

I have to confess that I much prefer the latin plural “supernovae” to the modernised “supernovas”, although most dictionaries (including the One True Chambers) give these both as valid forms.  In the interest of full disclosure I will point out that I did five years of Latin at school, and very much enjoyed it…

When I tweeted about my dislike for supernovas and preference for supernovae some replied that English words should have English plurals so that supernovas was preferred (although I wonder if that logic extends to, e.g. datums and phenomenons). Others said that supernovae was fine among experts but for science communication purposes it was better to say “supernovas” as this more obviously means “more than one supernova”. That’s a reasonable argument, but I have to admit I find it a little condescending to assume that an audience can cope with the idea of a massive star exploding as a consequence of gravitational collapse but be utterly bewildered by a straightforward latin plural.

One of the reasons I prefer the Latin plural – along with some other forms that may appear archaic, e.g. Nebulae – is that Astronomy is unique among sciences for having such a long history. Many astronomical terms derive from very ancient sources and in my view we should celebrate this fact because it’s part of the subject’s fascination. That’s just my opinion, of course. You are welcome to disagree with that too.

Anyway, you might be interested to know a couple of things. One is that the first use of “super-nova” recorded in the Oxford English Dictionary was in 1932 in a paper by Swedish astronomer Knut Lundmark. This word is however formed from “nova” (which means “new” in Latin) and the first use of this term in an astronomical setting was in a book by Tycho Brahe, published in 1573:

Brahe_book(I’ll leave it as an exercise to the student to translate the full title.)

Nowadays a nova is taken to be a much lower budget feature than a supernova but the “nova” described in Tycho’s book was was actually a supernova, SN1572 which he, along with many others, had observed the previous year. Historical novae were very often supernovae, in fact, because they are much brighter than mere novae. The real difference between these two classes of object wasn’t understood until the 20th Century, however, which is why the term supernova was coined much later than nova.

Anyway, back to pedantry.

A subsequent tweet from Roberto Trotta asserted  that in fact supernovae and supernovas are both wrong; the correct plural should be supernovæ, in which the two letters of the digraph “ae” are replaced with a single glyph known as a ligature. Often, as in this case, a ligature stands for a diphthong, a sort of composite vowel sound made by running two vowels together.   It’s one of the peculiarities of English that there are only five vowels, but these can represent quite different sounds depending on the context (and on the regional accent). This  means that English has many hidden diphthongs. For example,  the “o” in “no” is a diphthong in English. In languages such as Italian, in which the vowels are very pure, “no” is pronounced quite differently from English. The best test of whether a vowel is pure or not is whether your mouth changes shape as you pronounce it: your mouth moves as you say an English “no”, closing the vowel that stays open in the Italian “no”…

So, not all diphthongs are represented by ligatures. It’s also the case that not all ligatures represent diphthongs. Indeed some are composed entirely of consonants. My current employer’s logo features a ligature formed from the letters U and S:

image

The use of the ligature æ arose in Mediaeval Latin (or should I say Mediæval?). In fact if you look at the frontispiece of the Brahe book shown above you will see a number of examples of it in its upper-case form Æ. I’m by no means an expert in such things but my guess is that the use of such ligatures in printed works was favoured simply to speed up the typesetting process – which was very primitive – by allowing the compositor to use a single piece of type to set two characters. However, it does appear in handwritten documents e.g. in Old English, long before printing was invented so easier typesetting doesn’t explain it all.

Use of the specific ligature in question caught on particularly well in Scandinavia where it eventually became promoted to a letter in its own right (“aesc”) and is listed as a separate vowel in the modern Danish and Norwegian alphabets.  Early word-processing and computer typesetting software generally couldn’t render ligatures because they were just too complicated, so their use fell out of favour in the Eighties, though there are significant exceptions to this rule. Latex, for example, always allowed ligatures to be created quite easily. Software – even Microsoft Word – is much more sophisticated than it used to be, so it’s now not so much of a problem to use ligatures in digital text. Maybe they will make a comeback!

Anyway, the use of æ was optional even in Mediaeval Latin so I don’t think it can be argued that supernovæ is really more correct than supernovae, though to go back to a point I made earlier, I do admit that a rambling discussion of ligatures and diphthongs would not add much to a public lecture on exploding stars.

 

Advertisements

A Potted Prehistory of Cosmology

Posted in History, The Universe and Stuff with tags , , , , , , , , , , , , , , , , , , , , , on January 26, 2012 by telescoper

A few years ago I was asked to provide a short description of the history of cosmology, from the dawn of civilisation up to the establishment of the Big Bang model, in less than 1200 words. This is what I came up with. Who and what have I left out that you would have included?

–0–

 Is the Universe infinite? What is it made of? Has it been around forever?  Will it all come to an end? Since prehistoric times, humans have sought to build some kind of conceptual framework for answering questions such as these. The first such theories were myths. But however naïve or meaningless they may seem to us now, these speculations demonstrate the importance that we as a species have always attached to thinking about life, the Universe and everything.

Cosmology began to emerge as a recognisable scientific discipline with the Greeks, notably Thales (625-547 BC) and Anaximander (610-540 BC). The word itself is derived from the Greek “cosmos”, meaning the world as an ordered system or whole. In Greek, the opposite of “cosmos” is “chaos”. The Pythagoreans of the 6th century BC regarded numbers and geometry as the basis of all natural things. The advent of mathematical reasoning, and the idea that one can learn about the physical world using logic and reason marked the beginning of the scientific era. Plato (427-348 BC) expounded a complete account of the creation of the Universe, in which a divine Demiurge creates, in the physical world, imperfect representations of the structures of pure being that exist only in the world of ideas. The physical world is subject to change, whereas the world of ideas is eternal and immutable. Aristotle (384-322 BC), a pupil of Plato, built on these ideas to present a picture of the world in which the distant stars and planets execute perfect circular motions, circles being a manifestation of “divine” geometry. Aristotle’s Universe is a sphere centred on the Earth. The part of this sphere that extends as far as the Moon is the domain of change, the imperfect reality of Plato, but beyond this the heavenly bodies execute their idealised circular motions. This view of the Universe was to dominate western European thought throughout the Middle Ages, but its perfect circular motions did not match the growing quantities of astronomical data being gathered by the Greeks from the astronomical archives made by the Babylonians and Egyptians. Although Aristotle had emphasised the possibility of learning about the Universe by observation as well as pure thought, it was not until Ptolemy’s Almagest, compiled in the 2nd Century AD, that a complete mathematical model for the Universe was assembled that agreed with all the data available.

Much of the knowledge acquired by the Greeks was lost to Christian culture during the dark ages, but it survived in the Islamic world. As a result, cosmological thinking during the Middle Ages of Europe was rather backward. Thomas Aquinas (1225-74) seized on Aristotle’s ideas, which were available in Latin translation at the time while the Almagest was not, to forge a synthesis of pagan cosmology with Christian theology which was to dominated Western thought until the 16th and 17th centuries.

The dismantling of the Aristotelian world view is usually credited to Nicolaus Copernicus (1473-1543).  Ptolemy’s Almagest  was a complete theory, but it involved applying a different mathematical formula for the motion of each planet and therefore did not really represent an overall unifying system. In a sense, it described the phenomena of heavenly motion but did not explain them. Copernicus wanted to derive a single universal theory that treated everything on the same footing. He achieved this only partially, but did succeed in displacing the Earth from the centre of the scheme of things. It was not until Johannes Kepler (1571-1630) that a completely successful demolition of the Aristotelian system was achieved. Driven by the need to explain the highly accurate observations of planetary motion made by Tycho Brahe (1546-1601), Kepler replaced Aristotle’s divine circular orbits with more mundane ellipses.

The next great development on the road to modern cosmological thinking was the arrival on the scene of Isaac Newton (1642-1727). Newton was able to show, in his monumental Principia (1687), that the elliptical motions devised by Kepler were the natural outcome of a universal law of gravitation. Newton therefore re-established a kind of Platonic level on reality, the idealised world of universal laws of motion. The Universe, in Newton’s picture, behaves as a giant machine, enacting the regular motions demanded by the divine Creator and both time and space are absolute manifestations of an internal and omnipresent God.

Newton’s ideas dominated scientific thinking until the beginning of the 20th century, but by the 19th century the cosmic machine had developed imperfections. The mechanistic world-view had emerged alongside the first stirrings of technology. During the subsequent Industrial Revolution scientists had become preoccupied with the theory of engines and heat. These laws of thermodynamics had shown that no engine could work perfectly forever without running down. In this time there arose a widespread belief in the “Heat Death of the Universe”, the idea that the cosmos as a whole would eventually fizzle out just as a bouncing ball gradually dissipates its energy and comes to rest.

Another spanner was thrown into the works of Newton’s cosmic engine by Heinrich Olbers (1758-1840), who formulated in 1826 a paradox that still bears his name, although it was discussed by many before him, including Kepler. Olbers’ Paradox emerges from considering why the night sky is dark. In an infinite and unchanging Universe, every line of sight from an observer should hit a star, in much the same way as a line of sight through an infinite forest will eventually hit a tree. The consequence of this is that the night sky should be as bright as a typical star. The observed darkness at night is sufficient to prove the Universe cannot both infinite and eternal.

Whether the Universe is infinite or not, the part of it accessible to rational explanation has steadily increased. For Aristotle, the Moon’s orbit (a mere 400,000 km) marked a fundamental barrier, to Copernicus and Kepler the limit was the edge of the Solar System (billions of kilometres away). In the 18th and 19th centuries, it was being suggested that the Milky Way (a structure now known to be at least a billion times larger than the Solar System) to be was the entire Universe. Now it is known, thanks largely to Edwin Hubble (1889-1953), that the Milky Way is only one among hundreds of billions of similar galaxies.

The modern era of cosmology began in the early years of the 20th century, with a complete re-write of the laws of Nature. Albert Einstein (1879-1955) introduced the principle of relativity in 1905 and thus demolished Newton’s conception of space and time. Later, his general theory of relativity, also supplanted Newton’s law of universal gravitation. The first great works on relativistic cosmology by Alexander Friedmann (1888-1925), George Lemaître (1894-1966) and Wilhem de Sitter (1872-1934) formulated a new and complex language for the mathematical description of the Universe.

But while these conceptual developments paved the way, the final steps towards the modern era were taken by observers, not theorists. In 1929, Edwin Hubble, who had only recently shown that the Universe contained many galaxies like the Milky way, published the observations that led to the realisation that our Universe is expanding. That left the field open for two rival theories, one (“The Steady State”, with no beginning and no end)  in which matter is continuously created to fill in the gaps caused by the cosmic expansion and the other in which the whole shebang was created, in one go, in a primordial fireball we now call the Big Bang.

Eventually, in 1965, Arno Penzias and Robert  Wilson discovered the cosmic microwave background radiation, proof (or as near to proof as you’re likely to see) that our Universe began in a  Big Bang…

Art in the Afternoon

Posted in Art, The Universe and Stuff with tags , , , , , , on August 10, 2011 by telescoper

Just a quick blogette to mention that yesterday the workshop participants here in Copenhagen went on an excursion to the Louisiana Museum of Modern Art, which is just north of Copenhagen.

This is an extremely interesting museum to visit at any time, not just for the temporary exhibitions which at present include the architecturally-themed Living and some wonderful drawings made by David Hockney using his iPad; the latter almost made me want to go out and buy one.

There’s also a fine permanent collection, including many wonderful  sculptures by Alberto Giacometti :
and several by Henry Moore standing (or rather reclining) in the grounds:

What’s really great about Louisiana though is its relaxed informal atmosphere; kids are encouraged to play around (and sometimes in) the scupltures, there is lots of green space to relax in, and you are welcome even to swim in the sea, although I didn’t because I didn’t have my bathing costume with me. Many consider modern art and its galleries to be a bit pretentious, but that couldn’t be further than the truth for this place. I’ll also add that it was very busy indeed so is obviously extremely popular.

For those of you not so interested in Modern Art (which actually seemed to the case for many of my dining companions last night), there is a strong astronomical connection with this place because it offers a view of the Island of Hven on which Tycho Brahe established a famous observatory Uraniborg.

I’ve been to Louisiana many times but have never taken the short boat trip out to Hven, largely because there’s nothing much of the observatory left. Apparently the locals were squeezed mercilessly for taxes to pay for the running costs of Tycho’s observatory, with the result that by the time Brahe left in 1597 the residents of Hven were thoroughly fed up with him and tore the whole thing down.

The moral is clear of that little story is clear: astronomers need to keep the public on their side!

Now it’s time to start the workshop for today so I’d best be off…