The 2016 Nobel Prize for Physics goes to David Thouless, Duncan Haldane and Michael Kosterlitz

Well, as I suspected, the Nobel Prize Committee for Physics played with a very straight bat and did not award this years Prize to gravitational waves. I thought there was a reasonable chance they might bend the rules, and the polling was very even , so clearly some people thought so too. Anyway, I don’t think any bookmakers will be taking bets on next year!

Anyway, none of this should detract at all from the winner. Half this year’s prize was awarded to David J. Thouless (University of Washington, Seattle, WA, USA)  and the other half to F. Duncan M. Haldane (Princeton University, NJ, USA) and J. Michael Kosterlitz
(Brown University, Providence, RI, USA)

”for theoretical discoveries of topological phase transitions and topological phases of matter”

Although they now live and work in the USA, all three of the winners were born in the United Kingdom (two of them, Kosterlitz and Thouless, in Scotland); Haldane retains British nationality, Kosterlitz is now an American citizen and Thouless has joint US/UK nationality.

And here’s the text of the citation:

This year’s Laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter. Many people are hopeful of future applications in both materials science and electronics.

The three Laureates’ use of topological concepts in physics was decisive for their discoveries. Topology is a branch of mathematics that describes properties that only change step-wise. Using topology as a tool, they were able to astound the experts. In the early 1970s, Michael Kosterlitz and David Thouless overturned the then current theory that superconductivity or suprafluidity could not occur in thin layers. They demonstrated that superconductivity could occur at low temperatures and also explained the mechanism, phase transition, that makes superconductivity disappear at higher temperatures.

In the 1980s, Thouless was able to explain a previous experiment with very thin electrically conducting layers in which conductance was precisely measured as integer steps. He showed that these integers were topological in their nature. At around the same time, Duncan Haldane discovered how topological concepts can be used to understand the properties of chains of small magnets found in some materials.

We now know of many topological phases, not only in thin layers and threads, but also in ordinary three-dimensional materials. Over the last decade, this area has boosted frontline research in condensed matter physics, not least because of the hope that topological materials could be used in new generations of electronics and superconductors, or in future quantum computers. Current research is revealing the secrets of matter in the exotic worlds discovered by this year’s Nobel Laureates.

It’s not my field, but I send my heartiest congratulations to Professors Thouless, Haldane and Kosterlitz. Enjoy your trip to Stockholm – it’s lovely in December!

Note that the Thomson-Reuters Nobel Prize “predictor”“, which is not often right, was wrong again!


7 Responses to “The 2016 Nobel Prize for Physics goes to David Thouless, Duncan Haldane and Michael Kosterlitz”

  1. Anton Garrett Says:

    Tis a good day for Scotland too!

  2. Anton Garrett Says:

    Tomorrow, the chemistry prize – which is often awarded today for work that might be categorised either as physics or biochemistry. Let’s see…

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: