Eight Papers from the Dark Energy Survey

Just a quick post to point out the exciting news that this week a clutch of papers on cosmology using Type 1a Supernovae have been released by the Dark Energy Survey team. Naturally, all of them are on the arXiv. You can also read them here. For convenience I’ve provided links below to arXiv versions through their titles:

  1. Steve: A hierarchical Bayesian model for Supernova Cosmology
  2. First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Effects of Chromatic Corrections to Supernova Photometry on Measurements of Cosmological Parameters
  3. First Cosmology Results using Type Ia Supernova from the Dark Energy Survey: Simulations to Correct Supernova Distance Biases
  4. First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
  5. First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation
  6. First Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant
  7. Cosmological Constraints from Multiple Probes in the Dark Energy Survey
  8. First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters

Here’s a plot showing some of the cosmological constraints:

The parameter plotted on the vertical axis is the dark energy equation of state parameter, w, and w=-1 corresponds to a cosmological constant.

For those of youparticularly interested in the Hubble constant, the headline value from Paper 6 is H0 = 67.77 +/- 1.30 km s-1 Mpc-1. This closer to the value obtained from Planck and in tension with other values as I’ve blogged about before, and gives me an excuse to continue my online poll:

5 Responses to “Eight Papers from the Dark Energy Survey”

  1. Bryn Jones Says:

    Is this the exact same poll that you’ve posted before? By voting on this one and the earlier post, have I voted twice?

  2. Isn’t that DES result for H_0 very close to what Planck found, so not much tension there? Or did I misunderstand something?

Leave a comment